| Label |
Polynomial |
Degree |
Signature |
Discriminant |
Ram. prime count |
Root discriminant |
Galois root discriminant |
CM field |
Galois |
Monogenic |
Galois group |
Class group |
Narrow class group |
Unit group torsion |
Unit group rank |
Regulator |
| 2.0.455.1 |
$x^{2} - x + 114$ |
$2$ |
[0,1] |
$-\,5\cdot 7\cdot 13$ |
$3$ |
$21.3307290077$ |
$21.330729007701542$ |
✓ |
✓ |
✓ |
$C_2$ (as 2T1) |
$[2, 10]$ |
$[2, 10]$ |
$2$ |
0 |
$1$ |
| 2.0.615.1 |
$x^{2} - x + 154$ |
$2$ |
[0,1] |
$-\,3\cdot 5\cdot 41$ |
$3$ |
$24.7991935353$ |
$24.79919353527449$ |
✓ |
✓ |
✓ |
$C_2$ (as 2T1) |
$[2, 10]$ |
$[2, 10]$ |
$2$ |
0 |
$1$ |
| 2.0.776.1 |
$x^{2} + 194$ |
$2$ |
[0,1] |
$-\,2^{3}\cdot 97$ |
$2$ |
$27.8567765544$ |
$27.85677655436824$ |
✓ |
✓ |
✓ |
$C_2$ (as 2T1) |
$[20]$ |
$[20]$ |
$2$ |
0 |
$1$ |
| 2.0.824.1 |
$x^{2} + 206$ |
$2$ |
[0,1] |
$-\,2^{3}\cdot 103$ |
$2$ |
$28.7054001888$ |
$28.705400188814647$ |
✓ |
✓ |
✓ |
$C_2$ (as 2T1) |
$[20]$ |
$[20]$ |
$2$ |
0 |
$1$ |
| 2.0.836.1 |
$x^{2} + 209$ |
$2$ |
[0,1] |
$-\,2^{2}\cdot 11\cdot 19$ |
$3$ |
$28.9136645896$ |
$28.91366458960192$ |
✓ |
✓ |
✓ |
$C_2$ (as 2T1) |
$[2, 10]$ |
$[2, 10]$ |
$2$ |
0 |
$1$ |
| 2.0.920.1 |
$x^{2} + 230$ |
$2$ |
[0,1] |
$-\,2^{3}\cdot 5\cdot 23$ |
$3$ |
$30.3315017762$ |
$30.331501776206203$ |
✓ |
✓ |
✓ |
$C_2$ (as 2T1) |
$[2, 10]$ |
$[2, 10]$ |
$2$ |
0 |
$1$ |
| 2.0.1064.1 |
$x^{2} + 266$ |
$2$ |
[0,1] |
$-\,2^{3}\cdot 7\cdot 19$ |
$3$ |
$32.6190128606$ |
$32.61901286060018$ |
✓ |
✓ |
✓ |
$C_2$ (as 2T1) |
$[2, 10]$ |
$[2, 10]$ |
$2$ |
0 |
$1$ |
| 2.0.1124.1 |
$x^{2} + 281$ |
$2$ |
[0,1] |
$-\,2^{2}\cdot 281$ |
$2$ |
$33.5261092285$ |
$33.52610922848042$ |
✓ |
✓ |
✓ |
$C_2$ (as 2T1) |
$[20]$ |
$[20]$ |
$2$ |
0 |
$1$ |
| 2.0.1160.1 |
$x^{2} + 290$ |
$2$ |
[0,1] |
$-\,2^{3}\cdot 5\cdot 29$ |
$3$ |
$34.0587727319$ |
$34.058772731852805$ |
✓ |
✓ |
✓ |
$C_2$ (as 2T1) |
$[2, 10]$ |
$[2, 10]$ |
$2$ |
0 |
$1$ |
| 2.0.1263.1 |
$x^{2} - x + 316$ |
$2$ |
[0,1] |
$-\,3\cdot 421$ |
$2$ |
$35.5387112878$ |
$35.53871128783372$ |
✓ |
✓ |
✓ |
$C_2$ (as 2T1) |
$[20]$ |
$[20]$ |
$2$ |
0 |
$1$ |
| 2.0.1284.1 |
$x^{2} + 321$ |
$2$ |
[0,1] |
$-\,2^{2}\cdot 3\cdot 107$ |
$3$ |
$35.8329457343$ |
$35.832945734337834$ |
✓ |
✓ |
✓ |
$C_2$ (as 2T1) |
$[2, 10]$ |
$[2, 10]$ |
$2$ |
0 |
$1$ |
| 2.0.1460.1 |
$x^{2} + 365$ |
$2$ |
[0,1] |
$-\,2^{2}\cdot 5\cdot 73$ |
$3$ |
$38.2099463491$ |
$38.2099463490856$ |
✓ |
✓ |
✓ |
$C_2$ (as 2T1) |
$[2, 10]$ |
$[2, 10]$ |
$2$ |
0 |
$1$ |
| 2.0.1495.1 |
$x^{2} - x + 374$ |
$2$ |
[0,1] |
$-\,5\cdot 13\cdot 23$ |
$3$ |
$38.6652298584$ |
$38.66522985836241$ |
✓ |
✓ |
✓ |
$C_2$ (as 2T1) |
$[2, 10]$ |
$[2, 10]$ |
$2$ |
0 |
$1$ |
| 2.0.1524.1 |
$x^{2} + 381$ |
$2$ |
[0,1] |
$-\,2^{2}\cdot 3\cdot 127$ |
$3$ |
$39.0384425919$ |
$39.03844259188627$ |
✓ |
✓ |
✓ |
$C_2$ (as 2T1) |
$[2, 10]$ |
$[2, 10]$ |
$2$ |
0 |
$1$ |
| 2.0.1544.1 |
$x^{2} + 386$ |
$2$ |
[0,1] |
$-\,2^{3}\cdot 193$ |
$2$ |
$39.2937654088$ |
$39.293765408777$ |
✓ |
✓ |
✓ |
$C_2$ (as 2T1) |
$[20]$ |
$[20]$ |
$2$ |
0 |
$1$ |
| 2.0.1592.1 |
$x^{2} + 398$ |
$2$ |
[0,1] |
$-\,2^{3}\cdot 199$ |
$2$ |
$39.8998746865$ |
$39.89987468652001$ |
✓ |
✓ |
✓ |
$C_2$ (as 2T1) |
$[20]$ |
$[20]$ |
$2$ |
0 |
$1$ |
| 2.0.1604.1 |
$x^{2} + 401$ |
$2$ |
[0,1] |
$-\,2^{2}\cdot 401$ |
$2$ |
$40.049968789$ |
$40.049968789001575$ |
✓ |
✓ |
✓ |
$C_2$ (as 2T1) |
$[20]$ |
$[20]$ |
$2$ |
0 |
$1$ |
| 2.0.1652.1 |
$x^{2} + 413$ |
$2$ |
[0,1] |
$-\,2^{2}\cdot 7\cdot 59$ |
$3$ |
$40.6448028658$ |
$40.64480286580315$ |
✓ |
✓ |
✓ |
$C_2$ (as 2T1) |
$[2, 10]$ |
$[2, 10]$ |
$2$ |
0 |
$1$ |
| 2.0.1695.1 |
$x^{2} - x + 424$ |
$2$ |
[0,1] |
$-\,3\cdot 5\cdot 113$ |
$3$ |
$41.1703777005$ |
$41.1703777004778$ |
✓ |
✓ |
✓ |
$C_2$ (as 2T1) |
$[2, 10]$ |
$[2, 10]$ |
$2$ |
0 |
$1$ |
| 2.0.1739.1 |
$x^{2} - x + 435$ |
$2$ |
[0,1] |
$-\,37\cdot 47$ |
$2$ |
$41.701318924$ |
$41.701318923986086$ |
✓ |
✓ |
✓ |
$C_2$ (as 2T1) |
$[20]$ |
$[20]$ |
$2$ |
0 |
$1$ |
| 2.0.1748.1 |
$x^{2} + 437$ |
$2$ |
[0,1] |
$-\,2^{2}\cdot 19\cdot 23$ |
$3$ |
$41.8090899207$ |
$41.80908992073375$ |
✓ |
✓ |
✓ |
$C_2$ (as 2T1) |
$[2, 10]$ |
$[2, 10]$ |
$2$ |
0 |
$1$ |
| 2.0.1796.1 |
$x^{2} + 449$ |
$2$ |
[0,1] |
$-\,2^{2}\cdot 449$ |
$2$ |
$42.3792402008$ |
$42.37924020083418$ |
✓ |
✓ |
✓ |
$C_2$ (as 2T1) |
$[20]$ |
$[20]$ |
$2$ |
0 |
$1$ |
| 2.0.1880.1 |
$x^{2} + 470$ |
$2$ |
[0,1] |
$-\,2^{3}\cdot 5\cdot 47$ |
$3$ |
$43.3589667774$ |
$43.3589667773576$ |
✓ |
✓ |
✓ |
$C_2$ (as 2T1) |
$[2, 10]$ |
$[2, 10]$ |
$2$ |
0 |
$1$ |
| 2.0.1887.1 |
$x^{2} - x + 472$ |
$2$ |
[0,1] |
$-\,3\cdot 17\cdot 37$ |
$3$ |
$43.4396132579$ |
$43.439613257946945$ |
✓ |
✓ |
✓ |
$C_2$ (as 2T1) |
$[2, 10]$ |
$[2, 10]$ |
$2$ |
0 |
$1$ |
| 2.0.1896.1 |
$x^{2} + 474$ |
$2$ |
[0,1] |
$-\,2^{3}\cdot 3\cdot 79$ |
$3$ |
$43.5430821142$ |
$43.54308211415448$ |
✓ |
✓ |
✓ |
$C_2$ (as 2T1) |
$[2, 10]$ |
$[2, 10]$ |
$2$ |
0 |
$1$ |
| 2.0.1928.1 |
$x^{2} + 482$ |
$2$ |
[0,1] |
$-\,2^{3}\cdot 241$ |
$2$ |
$43.9089968002$ |
$43.9089968002003$ |
✓ |
✓ |
✓ |
$C_2$ (as 2T1) |
$[20]$ |
$[20]$ |
$2$ |
0 |
$1$ |
| 2.0.1940.1 |
$x^{2} + 485$ |
$2$ |
[0,1] |
$-\,2^{2}\cdot 5\cdot 97$ |
$3$ |
$44.0454310911$ |
$44.04543109109048$ |
✓ |
✓ |
✓ |
$C_2$ (as 2T1) |
$[2, 10]$ |
$[2, 10]$ |
$2$ |
0 |
$1$ |
| 2.0.1956.1 |
$x^{2} + 489$ |
$2$ |
[0,1] |
$-\,2^{2}\cdot 3\cdot 163$ |
$3$ |
$44.226688775$ |
$44.22668877499196$ |
✓ |
✓ |
✓ |
$C_2$ (as 2T1) |
$[2, 10]$ |
$[2, 10]$ |
$2$ |
0 |
$1$ |
| 2.0.2136.1 |
$x^{2} + 534$ |
$2$ |
[0,1] |
$-\,2^{3}\cdot 3\cdot 89$ |
$3$ |
$46.2168800332$ |
$46.216880033165374$ |
✓ |
✓ |
✓ |
$C_2$ (as 2T1) |
$[2, 10]$ |
$[2, 10]$ |
$2$ |
0 |
$1$ |
| 2.0.2247.1 |
$x^{2} - x + 562$ |
$2$ |
[0,1] |
$-\,3\cdot 7\cdot 107$ |
$3$ |
$47.402531578$ |
$47.40253157796533$ |
✓ |
✓ |
✓ |
$C_2$ (as 2T1) |
$[2, 10]$ |
$[2, 10]$ |
$2$ |
0 |
$1$ |
| 2.0.2360.1 |
$x^{2} + 590$ |
$2$ |
[0,1] |
$-\,2^{3}\cdot 5\cdot 59$ |
$3$ |
$48.579831206$ |
$48.579831205964474$ |
✓ |
✓ |
✓ |
$C_2$ (as 2T1) |
$[2, 10]$ |
$[2, 10]$ |
$2$ |
0 |
$1$ |
| 2.0.2404.1 |
$x^{2} + 601$ |
$2$ |
[0,1] |
$-\,2^{2}\cdot 601$ |
$2$ |
$49.0306026885$ |
$49.03060268852505$ |
✓ |
✓ |
✓ |
$C_2$ (as 2T1) |
$[20]$ |
$[20]$ |
$2$ |
0 |
$1$ |
| 2.0.2407.1 |
$x^{2} - x + 602$ |
$2$ |
[0,1] |
$-\,29\cdot 83$ |
$2$ |
$49.0611862881$ |
$49.06118628814432$ |
✓ |
✓ |
✓ |
$C_2$ (as 2T1) |
$[20]$ |
$[20]$ |
$2$ |
0 |
$1$ |
| 2.0.2483.1 |
$x^{2} - x + 621$ |
$2$ |
[0,1] |
$-\,13\cdot 191$ |
$2$ |
$49.8297100132$ |
$49.82971001320397$ |
✓ |
✓ |
✓ |
$C_2$ (as 2T1) |
$[20]$ |
$[20]$ |
$2$ |
0 |
$1$ |
| 2.0.2487.1 |
$x^{2} - x + 622$ |
$2$ |
[0,1] |
$-\,3\cdot 829$ |
$2$ |
$49.8698305592$ |
$49.86983055916673$ |
✓ |
✓ |
✓ |
$C_2$ (as 2T1) |
$[20]$ |
$[20]$ |
$2$ |
0 |
$1$ |
| 2.0.2532.1 |
$x^{2} + 633$ |
$2$ |
[0,1] |
$-\,2^{2}\cdot 3\cdot 211$ |
$3$ |
$50.3189825016$ |
$50.3189825016365$ |
✓ |
✓ |
✓ |
$C_2$ (as 2T1) |
$[2, 10]$ |
$[2, 10]$ |
$2$ |
0 |
$1$ |
| 2.0.2552.1 |
$x^{2} + 638$ |
$2$ |
[0,1] |
$-\,2^{3}\cdot 11\cdot 29$ |
$3$ |
$50.5173237613$ |
$50.51732376126036$ |
✓ |
✓ |
✓ |
$C_2$ (as 2T1) |
$[2, 10]$ |
$[2, 10]$ |
$2$ |
0 |
$1$ |
| 2.0.2596.1 |
$x^{2} + 649$ |
$2$ |
[0,1] |
$-\,2^{2}\cdot 11\cdot 59$ |
$3$ |
$50.9509568114$ |
$50.950956811427986$ |
✓ |
✓ |
✓ |
$C_2$ (as 2T1) |
$[2, 10]$ |
$[2, 10]$ |
$2$ |
0 |
$1$ |
| 2.0.2603.1 |
$x^{2} - x + 651$ |
$2$ |
[0,1] |
$-\,19\cdot 137$ |
$2$ |
$51.0196040753$ |
$51.01960407529639$ |
✓ |
✓ |
✓ |
$C_2$ (as 2T1) |
$[20]$ |
$[20]$ |
$2$ |
0 |
$1$ |
| 2.0.2712.1 |
$x^{2} + 678$ |
$2$ |
[0,1] |
$-\,2^{3}\cdot 3\cdot 113$ |
$3$ |
$52.0768662652$ |
$52.076866265166146$ |
✓ |
✓ |
✓ |
$C_2$ (as 2T1) |
$[2, 10]$ |
$[2, 10]$ |
$2$ |
0 |
$1$ |
| 2.0.2724.1 |
$x^{2} + 681$ |
$2$ |
[0,1] |
$-\,2^{2}\cdot 3\cdot 227$ |
$3$ |
$52.1919534028$ |
$52.191953402799555$ |
✓ |
✓ |
✓ |
$C_2$ (as 2T1) |
$[2, 10]$ |
$[2, 10]$ |
$2$ |
0 |
$1$ |
| 2.0.2743.1 |
$x^{2} - x + 686$ |
$2$ |
[0,1] |
$-\,13\cdot 211$ |
$2$ |
$52.3736575007$ |
$52.373657500693994$ |
✓ |
✓ |
✓ |
$C_2$ (as 2T1) |
$[20]$ |
$[20]$ |
$2$ |
0 |
$1$ |
| 2.0.2948.1 |
$x^{2} + 737$ |
$2$ |
[0,1] |
$-\,2^{2}\cdot 11\cdot 67$ |
$3$ |
$54.295487842$ |
$54.29548784199291$ |
✓ |
✓ |
✓ |
$C_2$ (as 2T1) |
$[2, 10]$ |
$[2, 10]$ |
$2$ |
0 |
$1$ |
| 2.0.2983.1 |
$x^{2} - x + 746$ |
$2$ |
[0,1] |
$-\,19\cdot 157$ |
$2$ |
$54.6168472177$ |
$54.616847217685496$ |
✓ |
✓ |
✓ |
$C_2$ (as 2T1) |
$[20]$ |
$[20]$ |
$2$ |
0 |
$1$ |
| 2.0.2987.1 |
$x^{2} - x + 747$ |
$2$ |
[0,1] |
$-\,29\cdot 103$ |
$2$ |
$54.6534536878$ |
$54.653453687758834$ |
✓ |
✓ |
✓ |
$C_2$ (as 2T1) |
$[20]$ |
$[20]$ |
$2$ |
0 |
$1$ |
| 2.0.3007.1 |
$x^{2} - x + 752$ |
$2$ |
[0,1] |
$-\,31\cdot 97$ |
$2$ |
$54.8361194834$ |
$54.83611948342078$ |
✓ |
✓ |
✓ |
$C_2$ (as 2T1) |
$[20]$ |
$[20]$ |
$2$ |
0 |
$1$ |
| 2.0.3016.1 |
$x^{2} + 754$ |
$2$ |
[0,1] |
$-\,2^{3}\cdot 13\cdot 29$ |
$3$ |
$54.918120871$ |
$54.91812087098393$ |
✓ |
✓ |
✓ |
$C_2$ (as 2T1) |
$[2, 10]$ |
$[2, 10]$ |
$2$ |
0 |
$1$ |
| 2.0.3076.1 |
$x^{2} + 769$ |
$2$ |
[0,1] |
$-\,2^{2}\cdot 769$ |
$2$ |
$55.4616984954$ |
$55.46169849544819$ |
✓ |
✓ |
✓ |
$C_2$ (as 2T1) |
$[20]$ |
$[20]$ |
$2$ |
0 |
$1$ |
| 2.0.3099.1 |
$x^{2} - x + 775$ |
$2$ |
[0,1] |
$-\,3\cdot 1033$ |
$2$ |
$55.6686626389$ |
$55.66866263886712$ |
✓ |
✓ |
✓ |
$C_2$ (as 2T1) |
$[20]$ |
$[20]$ |
$2$ |
0 |
$1$ |
| 2.0.3103.1 |
$x^{2} - x + 776$ |
$2$ |
[0,1] |
$-\,29\cdot 107$ |
$2$ |
$55.7045779088$ |
$55.70457790882182$ |
✓ |
✓ |
✓ |
$C_2$ (as 2T1) |
$[20]$ |
$[20]$ |
$2$ |
0 |
$1$ |