Note: Search results may be incomplete due to uncomputed quantities: Class number (201181 objects)
Refine search
| Label | Polynomial | Discriminant | Galois group | Class group |
|---|---|---|---|---|
| 3.1.104...075.15 | $x^{3} - 8461534964025$ | $-\,3^{5}\cdot 5^{2}\cdot 11^{2}\cdot 13^{2}\cdot 17^{2}\cdot 19^{2}\cdot 29^{2}\cdot 31^{2}$ | $S_3$ (as 3T2) | $[3, 3, 3, 3, 6, 43596]$ |
| 3.1.167...052.32 | $x^{3} - 3672223248694$ | $-\,2^{2}\cdot 3^{3}\cdot 7^{2}\cdot 11^{2}\cdot 13^{2}\cdot 19^{2}\cdot 23^{2}\cdot 29^{2}\cdot 31^{2}$ | $S_3$ (as 3T2) | $[3, 3, 3, 3, 3, 3, 31800]$ |
| 3.1.205...347.109 | $x^{3} - 115976283423$ | $-\,3^{5}\cdot 7^{2}\cdot 11^{2}\cdot 13^{2}\cdot 17^{2}\cdot 19^{2}\cdot 29^{2}\cdot 31^{2}$ | $S_3$ (as 3T2) | $[3, 3, 3, 3, 6, 54648]$ |
| 3.1.285...012.16 | $x^{3} - 11662335372226$ | $-\,2^{2}\cdot 3^{3}\cdot 7^{2}\cdot 11^{2}\cdot 17^{2}\cdot 19^{2}\cdot 23^{2}\cdot 29^{2}\cdot 31^{2}$ | $S_3$ (as 3T2) | $[3, 3, 3, 3, 3, 3, 44613]$ |
| 3.1.418...300.84 | $x^{3} - 8534409427830$ | $-\,2^{2}\cdot 3^{5}\cdot 5^{2}\cdot 11^{2}\cdot 13^{2}\cdot 17^{2}\cdot 19^{2}\cdot 29^{2}\cdot 31^{2}$ | $S_3$ (as 3T2) | $[3, 3, 3, 3, 3, 3, 36666]$ |
| 3.1.143...700.20 | $x^{3} - 66818917315150$ | $-\,2^{2}\cdot 3^{3}\cdot 5^{2}\cdot 7^{2}\cdot 11^{2}\cdot 13^{2}\cdot 17^{2}\cdot 19^{2}\cdot 23^{2}\cdot 31^{2}$ | $S_3$ (as 3T2) | $[3, 3, 3, 3, 3, 3, 6, 15852]$ |
| 3.1.183...700.8 | $x^{3} - 112925974669950$ | $-\,2^{2}\cdot 3^{5}\cdot 5^{2}\cdot 13^{2}\cdot 17^{2}\cdot 19^{2}\cdot 23^{2}\cdot 29^{2}\cdot 31^{2}$ | $S_3$ (as 3T2) | $[3, 3, 3, 3, 3, 6, 14292]$ |
| 3.1.183...700.67 | $x^{3} - 35124132589650$ | $-\,2^{2}\cdot 3^{5}\cdot 5^{2}\cdot 13^{2}\cdot 17^{2}\cdot 19^{2}\cdot 23^{2}\cdot 29^{2}\cdot 31^{2}$ | $S_3$ (as 3T2) | $[3, 3, 3, 3, 3, 3, 109359]$ |
| 3.1.417...300.37 | $x^{3} - 81313514792510$ | $-\,2^{2}\cdot 3^{3}\cdot 5^{2}\cdot 7^{2}\cdot 11^{2}\cdot 13^{2}\cdot 19^{2}\cdot 23^{2}\cdot 29^{2}\cdot 31^{2}$ | $S_3$ (as 3T2) | $[3, 3, 3, 3, 3, 3, 6, 18876]$ |
| 3.1.752...075.81 | $x^{3} - 72228165984975$ | $-\,3^{5}\cdot 5^{2}\cdot 7^{2}\cdot 11^{2}\cdot 13^{2}\cdot 17^{2}\cdot 23^{2}\cdot 29^{2}\cdot 31^{2}$ | $S_3$ (as 3T2) | $[3, 3, 3, 3, 3, 9, 31347]$ |
| 3.1.939...675.123 | $x^{3} - 33511298365545$ | $-\,3^{5}\cdot 5^{2}\cdot 7^{2}\cdot 11^{2}\cdot 13^{2}\cdot 19^{2}\cdot 23^{2}\cdot 29^{2}\cdot 31^{2}$ | $S_3$ (as 3T2) | $[3, 3, 3, 3, 3, 3, 3, 5202]$ |
| 3.1.939...675.137 | $x^{3} - 24462480957915$ | $-\,3^{5}\cdot 5^{2}\cdot 7^{2}\cdot 11^{2}\cdot 13^{2}\cdot 19^{2}\cdot 23^{2}\cdot 29^{2}\cdot 31^{2}$ | $S_3$ (as 3T2) | $[3, 3, 3, 3, 3, 3, 19938]$ |
| 3.1.113...300.263 | $x^{3} - 49104971615700$ | $-\,2^{2}\cdot 3^{5}\cdot 5^{2}\cdot 7^{2}\cdot 11^{2}\cdot 13^{2}\cdot 17^{2}\cdot 19^{2}\cdot 23^{2}\cdot 29^{2}$ | $S_3$ (as 3T2) | $[3, 3, 3, 3, 3, 3, 3, 5328]$ |
| 3.1.129...300.178 | $x^{3} - 94761373646940$ | $-\,2^{2}\cdot 3^{5}\cdot 5^{2}\cdot 7^{2}\cdot 11^{2}\cdot 13^{2}\cdot 17^{2}\cdot 19^{2}\cdot 23^{2}\cdot 31^{2}$ | $S_3$ (as 3T2) | $[3, 3, 3, 3, 3, 3, 3, 26124]$ |
| 3.1.300...300.295 | $x^{3} - 45157777725060$ | $-\,2^{2}\cdot 3^{5}\cdot 5^{2}\cdot 7^{2}\cdot 11^{2}\cdot 13^{2}\cdot 17^{2}\cdot 23^{2}\cdot 29^{2}\cdot 31^{2}$ | $S_3$ (as 3T2) | $[3, 3, 3, 3, 3, 3, 6, 3402]$ |
| 3.1.375...700.472 | $x^{3} - 1297744347900$ | $-\,2^{2}\cdot 3^{5}\cdot 5^{2}\cdot 7^{2}\cdot 11^{2}\cdot 13^{2}\cdot 19^{2}\cdot 23^{2}\cdot 29^{2}\cdot 31^{2}$ | $S_3$ (as 3T2) | $[3, 3, 3, 3, 3, 3, 3, 6804]$ |
| 3.1.221...700.49 | $x^{3} - 2944371252601350$ | $-\,2^{2}\cdot 3^{5}\cdot 5^{2}\cdot 11^{2}\cdot 13^{2}\cdot 17^{2}\cdot 19^{2}\cdot 23^{2}\cdot 29^{2}\cdot 31^{2}$ | $S_3$ (as 3T2) | $[3, 3, 3, 3, 3, 3, 3, 6204]$ |
| 3.1.434...252.75 | $x^{3} - 3873906091057002$ | $-\,2^{2}\cdot 3^{5}\cdot 7^{2}\cdot 11^{2}\cdot 13^{2}\cdot 17^{2}\cdot 19^{2}\cdot 23^{2}\cdot 29^{2}\cdot 31^{2}$ | $S_3$ (as 3T2) | $[3, 3, 3, 3, 3, 3, 3, 14592]$ |
| 3.1.434...252.487 | $x^{3} - 2486950077612$ | $-\,2^{2}\cdot 3^{5}\cdot 7^{2}\cdot 11^{2}\cdot 13^{2}\cdot 17^{2}\cdot 19^{2}\cdot 23^{2}\cdot 29^{2}\cdot 31^{2}$ | $S_3$ (as 3T2) | $[3, 3, 3, 3, 3, 3, 3, 4824]$ |
| 3.1.120...700.77 | $x^{3} - 5108609951094650$ | $-\,2^{2}\cdot 3^{3}\cdot 5^{2}\cdot 7^{2}\cdot 11^{2}\cdot 13^{2}\cdot 17^{2}\cdot 19^{2}\cdot 23^{2}\cdot 29^{2}\cdot 31^{2}$ | $S_3$ (as 3T2) | $[3, 3, 3, 3, 3, 6, 6, 6, 300]$ |
| 3.1.271...075.12 | $x^{3} - 27527428671567825$ | $-\,3^{5}\cdot 5^{2}\cdot 7^{2}\cdot 11^{2}\cdot 13^{2}\cdot 17^{2}\cdot 19^{2}\cdot 23^{2}\cdot 29^{2}\cdot 31^{2}$ | $S_3$ (as 3T2) | $[3, 3, 3, 3, 3, 3, 3, 30522]$ |
| 3.1.108...300.361 | $x^{3} - 12621271643880900$ | $-\,2^{2}\cdot 3^{5}\cdot 5^{2}\cdot 7^{2}\cdot 11^{2}\cdot 13^{2}\cdot 17^{2}\cdot 19^{2}\cdot 23^{2}\cdot 29^{2}\cdot 31^{2}$ | $S_3$ (as 3T2) | $[3, 3, 3, 3, 3, 3, 3, 3, 6228]$ |
| 3.1.108...300.837 | $x^{3} - 317086134895530$ | $-\,2^{2}\cdot 3^{5}\cdot 5^{2}\cdot 7^{2}\cdot 11^{2}\cdot 13^{2}\cdot 17^{2}\cdot 19^{2}\cdot 23^{2}\cdot 29^{2}\cdot 31^{2}$ | $S_3$ (as 3T2) | $[3, 3, 3, 3, 3, 3, 3, 6, 1494]$ |
| 4.0.340...000.51 | $x^{4} + 65063988990$ | $2^{11}\cdot 3^{3}\cdot 5^{3}\cdot 7^{3}\cdot 11^{3}\cdot 13^{3}\cdot 17^{3}$ | $D_{4}$ (as 4T3) | $[2, 4, 4, 4, 4, 29372]$ |
| 6.0.422...831.2 | $x^{6} - x^{5} + 8787 x^{4} - 6059 x^{3} + 28507372 x^{2} - 7597780 x + 33662728000$ | $-\,7^{4}\cdot 97^{5}\cdot 127^{3}$ | $C_6$ (as 6T1) | $[6, 12, 258804]$ |
| 6.0.129...943.4 | $x^{6} + 5634 x^{4} - 68860 x^{3} + 9693297 x^{2} - 26400924 x + 5179359988$ | $-\,3^{9}\cdot 13^{3}\cdot 313^{5}$ | $C_6$ (as 6T1) | $[2, 2, 4, 4, 8, 29640]$ |
| 6.0.368...979.1 | $x^{6} + 8289 x^{4} - 80434 x^{3} + 20366073 x^{2} - 348477849 x + 1635326065$ | $-\,3^{9}\cdot 19^{3}\cdot 307^{5}$ | $C_6$ (as 6T1) | $[2, 4, 84, 15540]$ |
| 6.0.545...875.1 | $x^{6} - x^{5} + 18448 x^{4} + 56564 x^{3} + 46801426 x^{2} - 156198868 x + 36344311899$ | $-\,5^{3}\cdot 13^{3}\cdot 31^{5}\cdot 37^{5}$ | $C_6$ (as 6T1) | $[2, 2, 2, 2, 2, 2, 192612]$ |
| 6.0.666...375.1 | $x^{6} - 3 x^{5} - 10029 x^{4} - 263493 x^{3} + 27354072 x^{2} + 1540417020 x + 22520129696$ | $-\,3^{8}\cdot 5^{3}\cdot 7^{5}\cdot 13^{5}\cdot 19^{4}$ | $C_6$ (as 6T1) | $[3, 3, 3, 3, 3, 18, 8190]$ |
| 6.0.256...599.2 | $x^{6} - x^{5} + 9426 x^{4} - 450554 x^{3} + 18140045 x^{2} - 286457253 x + 3979358720$ | $-\,7^{3}\cdot 5953^{5}$ | $C_6$ (as 6T1) | $[10, 1260, 1260]$ |
| 6.0.275...000.2 | $x^{6} - 2 x^{5} + 11503 x^{4} - 14034 x^{3} + 47821578 x^{2} - 47766312 x + 71212551201$ | $-\,2^{9}\cdot 3^{3}\cdot 5^{3}\cdot 7^{3}\cdot 19^{5}\cdot 37^{4}$ | $C_6$ (as 6T1) | $[2, 2, 2, 2, 6, 6, 12, 1596]$ |
| 6.0.323...368.1 | $x^{6} + 17862 x^{4} + 94525704 x^{2} + 125057506392$ | $-\,2^{9}\cdot 3^{3}\cdot 13^{5}\cdot 229^{5}$ | $C_6$ (as 6T1) | $[2, 2, 6, 12, 40932]$ |
| 6.0.376...671.2 | $x^{6} - x^{5} + 26090 x^{4} - 737300 x^{3} + 20392840 x^{2} - 213000608 x + 2189201152$ | $-\,59^{3}\cdot 1789^{5}$ | $C_6$ (as 6T1) | $[16, 16, 58608]$ |
| 6.0.403...947.1 | $x^{6} + x^{4} - 73727 x^{2} + 452984832$ | $-\,3^{3}\cdot 13^{4}\cdot 47^{4}\cdot 181^{4}$ | $S_3$ (as 6T2) | $[3, 3, 3, 702, 702]$ |
| 6.0.474...464.1 | $x^{6} - 2 x^{5} - 891 x^{4} + 8430 x^{3} + 246277 x^{2} - 4679524 x + 22110817$ | $-\,2^{4}\cdot 13^{5}\cdot 41^{3}\cdot 103^{5}$ | $S_3\times C_3$ (as 6T5) | $[2, 6, 78, 16068]$ |
| 6.0.493...000.1 | $x^{6} + 68085500$ | $-\,2^{4}\cdot 3^{6}\cdot 5^{3}\cdot 7^{3}\cdot 397^{5}$ | $D_{6}$ (as 6T3) | $[2, 2, 6, 18, 36, 648]$ |
| 6.0.553...239.2 | $x^{6} - x^{5} + 30402 x^{4} + 160 x^{3} + 281875392 x^{2} - 2304 x + 647138308608$ | $-\,7^{5}\cdot 13^{5}\cdot 19^{5}\cdot 71^{3}$ | $C_6$ (as 6T1) | $[2, 2, 6, 6, 238518]$ |
| 6.0.644...392.1 | $x^{6} - 2 x^{5} - 751 x^{4} + 6606 x^{3} + 178424 x^{2} - 3144948 x + 13758471$ | $-\,2^{9}\cdot 19^{3}\cdot 1129^{5}$ | $S_3\times C_3$ (as 6T5) | $[2, 2, 2, 2, 2, 337230]$ |
| 6.0.645...000.2 | $x^{6} - 2 x^{5} + 146403 x^{4} - 195104 x^{3} + 7153206168 x^{2} - 4783197112 x + 116641043008316$ | $-\,2^{9}\cdot 5^{3}\cdot 7^{4}\cdot 19^{5}\cdot 257^{3}$ | $C_6$ (as 6T1) | $[2, 2, 2, 2, 6, 6, 32976]$ |
| 6.0.660...904.1 | $x^{6} + 11028 x^{4} + 30404196 x^{2} + 27018600$ | $-\,2^{9}\cdot 3^{9}\cdot 919^{5}$ | $C_6$ (as 6T1) | $[3, 6, 1180530]$ |
| 6.0.748...239.2 | $x^{6} - x^{5} + 27256 x^{4} + 441536 x^{3} + 171676160 x^{2} + 1359142912 x + 260917166080$ | $-\,13^{5}\cdot 47^{3}\cdot 181^{5}$ | $C_6$ (as 6T1) | $[6, 2130534]$ |
| 6.0.772...267.1 | $x^{6} + x^{4} - 86711 x^{2} + 626580912$ | $-\,3^{3}\cdot 7^{4}\cdot 17^{4}\cdot 1093^{4}$ | $S_3$ (as 6T2) | $[6, 6, 372, 1116]$ |
| 6.0.851...000.3 | $x^{6} + 61620 x^{4} + 949256100 x^{2} + 833102400000$ | $-\,2^{9}\cdot 3^{9}\cdot 5^{3}\cdot 13^{3}\cdot 79^{5}$ | $C_6$ (as 6T1) | $[2, 2, 2, 4, 4, 4, 4, 6096]$ |
| 6.0.873...623.2 | $x^{6} - x^{5} + 34800 x^{4} + 140350 x^{3} + 358489985 x^{2} + 716682003 x + 914631226334$ | $-\,79^{3}\cdot 1777^{5}$ | $C_6$ (as 6T1) | $[2, 8, 6103224]$ |
| 6.0.903...667.1 | $x^{6} + x^{4} - 90179 x^{2} + 677702700$ | $-\,3^{3}\cdot 17^{4}\cdot 73^{4}\cdot 109^{4}$ | $S_3$ (as 6T2) | $[3, 3, 3, 1143, 1143]$ |
| 6.0.104...000.2 | $x^{6} + 60060 x^{4} + 901800900 x^{2} + 2325523200000$ | $-\,2^{9}\cdot 3^{9}\cdot 5^{3}\cdot 7^{5}\cdot 11^{3}\cdot 13^{5}$ | $C_6$ (as 6T1) | $[2, 2, 2, 2, 2, 2, 2, 6, 15288]$ |
| 6.0.109...187.1 | $x^{6} - 3 x^{5} + 6 x^{4} + 94607 x^{3} - 141915 x^{2} - 141924 x + 2238046864$ | $-\,3^{11}\cdot 13^{4}\cdot 1213^{4}$ | $S_3$ (as 6T2) | $[3, 3, 735, 2205]$ |
| 6.0.122...375.1 | $x^{6} + 27003375$ | $-\,3^{11}\cdot 5^{3}\cdot 7^{5}\cdot 127^{5}$ | $D_{6}$ (as 6T3) | $[2, 2, 12, 48, 5472]$ |
| 6.0.129...000.2 | $x^{6} - 2 x^{5} + 62627 x^{4} - 82934 x^{3} + 1314242662 x^{2} - 911803664 x + 9241132914001$ | $-\,2^{9}\cdot 5^{3}\cdot 7^{3}\cdot 13^{5}\cdot 19^{4}\cdot 23^{3}$ | $C_6$ (as 6T1) | $[2, 2, 2, 2, 6, 106974]$ |
| 6.0.134...056.2 | $x^{6} + 18780 x^{4} - 13772 x^{3} + 143132709 x^{2} + 297433884 x + 421681500746$ | $-\,2^{9}\cdot 3^{8}\cdot 11^{3}\cdot 313^{5}$ | $C_6$ (as 6T1) | $[2, 2, 2, 4, 24, 22248]$ |