Further refine search
Results (displaying matches 1-50 of at least 1000) Next
| Label | Polynomial | Discriminant | Galois group | Class group |
|---|---|---|---|---|
| 4.0.34060633877926656000.51 | x4 + 65063988990 | \( 2^{11}\cdot 3^{3}\cdot 5^{3}\cdot 7^{3}\cdot 11^{3}\cdot 13^{3}\cdot 17^{3} \) | $D_{4}$ (as 4T3) | $[2, 4, 4, 4, 4, 29372]$ (GRH) |
| 6.0.666962499705409191375.1 | x6 - 3x5 - 10029x4 - 263493x3 + 27354072x2 + 1540417020x + 22520129696 | \( -\,3^{8}\cdot 5^{3}\cdot 7^{5}\cdot 13^{5}\cdot 19^{4} \) | $C_6$ (as 6T1) | $[3, 3, 3, 3, 3, 18, 8190]$ (GRH) |
| 6.0.4038712184239968337947.1 | x6 + x4 - 73727x2 + 452984832 | \( -\,3^{3}\cdot 13^{4}\cdot 47^{4}\cdot 181^{4} \) | $S_3$ (as 6T2) | $[3, 3, 3, 702, 702]$ (GRH) |
| 6.0.7727379786207456600267.1 | x6 + x4 - 86711x2 + 626580912 | \( -\,3^{3}\cdot 7^{4}\cdot 17^{4}\cdot 1093^{4} \) | $S_3$ (as 6T2) | $[6, 6, 372, 1116]$ (GRH) |
| 6.0.9039759615677114306667.1 | x6 + x4 - 90179x2 + 677702700 | \( -\,3^{3}\cdot 17^{4}\cdot 73^{4}\cdot 109^{4} \) | $S_3$ (as 6T2) | $[3, 3, 3, 1143, 1143]$ (GRH) |
| 6.0.10953436997874693548187.1 | x6 - 3x5 + 6x4 + 94607x3 - 141915x2 - 141924x + 2238046864 | \( -\,3^{11}\cdot 13^{4}\cdot 1213^{4} \) | $S_3$ (as 6T2) | $[3, 3, 735, 2205]$ (GRH) |
| 6.0.15410603129491228573872.1 | x6 + 884838828 | \( -\,2^{4}\cdot 3^{11}\cdot 31^{4}\cdot 277^{4} \) | $S_3$ (as 6T2) | $[3, 3, 6, 6, 114, 342]$ (GRH) |
| 6.0.29600300339450887234347.1 | x6 - 3x5 + 4x4 - 3x3 - 60653x2 + 60654x + 1226302572 | \( -\,3^{3}\cdot 19^{4}\cdot 61^{4}\cdot 157^{4} \) | $S_3$ (as 6T2) | $[3, 3, 3, 735, 735]$ (GRH) |
| 6.0.30621503739225077078643.1 | x6 - 35317x3 + 44050558200013 | \( -\,3^{9}\cdot 35317^{4} \) | $C_6$ (as 6T1) | $[6, 6, 30, 16410]$ (GRH) |
| 6.0.34060398829422910760907.1 | x6 - 3x5 + 4x4 - 3x3 - 62819x2 + 62820x + 1315450800 | \( -\,3^{3}\cdot 7^{4}\cdot 13^{4}\cdot 19^{4}\cdot 109^{4} \) | $S_3$ (as 6T2) | $[3, 3, 3, 3, 3, 354, 354]$ (GRH) |
| 6.0.59884547451490237421232.1 | x6 - 3x5 + 6x4 + 144669x3 - 217008x2 - 217017x + 5232930921 | \( -\,2^{4}\cdot 3^{7}\cdot 7^{4}\cdot 5167^{4} \) | $S_3$ (as 6T2) | $[3, 3, 3, 612, 612]$ (GRH) |
| 6.0.72449856531798127834032.1 | x6 - 3x5 + 6x4 + 151725x3 - 227592x2 - 227601x + 5755801689 | \( -\,2^{4}\cdot 3^{7}\cdot 7^{4}\cdot 5419^{4} \) | $S_3$ (as 6T2) | $[3, 3, 3, 666, 666]$ (GRH) |
| 6.0.105072746302804719616875.1 | x6 - 3x5 + 6x4 + 832543x3 - 1248819x2 - 1248828x + 173285708176 | \( -\,3^{7}\cdot 5^{4}\cdot 16651^{4} \) | $S_3$ (as 6T2) | $[2, 6, 1548, 1548]$ (GRH) |
| 6.0.137927869762935648166875.1 | x6 - 3x5 + 6x4 + 178223x3 - 267339x2 - 267348x + 7941661456 | \( -\,3^{11}\cdot 5^{4}\cdot 13^{4}\cdot 457^{4} \) | $S_3$ (as 6T2) | $[3, 3, 3, 3, 231, 693]$ (GRH) |
| 6.0.150066562433717068059375.1 | x6 + 1478295 | \( -\,3^{10}\cdot 5^{5}\cdot 7^{5}\cdot 13^{5}\cdot 19^{4} \) | $D_{6}$ (as 6T3) | $[3, 3, 6, 6, 72, 1080]$ (GRH) |
| 6.0.164763093048738239266875.1 | x6 - 3x5 + 6x4 + 186323x3 - 279489x2 - 279498x + 8679903556 | \( -\,3^{11}\cdot 5^{4}\cdot 6211^{4} \) | $S_3$ (as 6T2) | $[3, 9, 990, 990]$ (GRH) |
| 6.0.198551646349438516151472.1 | x6 - 3x5 + 4x4 - 3x3 - 195224x2 + 195225x + 12704266875 | \( -\,2^{4}\cdot 3^{3}\cdot 7^{4}\cdot 13^{4}\cdot 1609^{4} \) | $S_3$ (as 6T2) | $[3, 3, 3, 3, 429, 1287]$ (GRH) |
| 6.0.218391067782294490287792.1 | x6 - 3x5 + 4x4 - 3x3 - 199928x2 + 199929x + 13323868347 | \( -\,2^{4}\cdot 3^{3}\cdot 7^{4}\cdot 31^{4}\cdot 691^{4} \) | $S_3$ (as 6T2) | $[3, 3, 3, 3, 3, 294, 294]$ (GRH) |
| 6.0.278298213467874667470000.1 | x6 - 3x5 + 6x4 + 424833x3 - 637254x2 - 637263x + 45122681241 | \( -\,2^{4}\cdot 3^{7}\cdot 5^{4}\cdot 13^{4}\cdot 19^{4}\cdot 43^{4} \) | $S_3$ (as 6T2) | $[3, 3, 3, 3, 3, 6, 6, 42, 42]$ (GRH) |
| 6.0.286680761872911663511203.1 | x6 - 61777x3 + 235765602504433 | \( -\,3^{9}\cdot 163^{4}\cdot 379^{4} \) | $C_6$ (as 6T1) | $[3, 3, 3, 3, 3, 3, 58653]$ (GRH) |
| 6.0.303058187263987335900963.1 | x6 - 62641x3 + 245796699240721 | \( -\,3^{9}\cdot 37^{4}\cdot 1693^{4} \) | $C_6$ (as 6T1) | $[3, 3, 12, 12, 36, 684]$ (GRH) |
| 6.0.317992113503391600270000.1 | x6 - 3x5 + 6x4 + 439233x3 - 658854x2 - 658863x + 48233383641 | \( -\,2^{4}\cdot 3^{7}\cdot 5^{4}\cdot 79^{4}\cdot 139^{4} \) | $S_3$ (as 6T2) | $[3, 3, 3, 3, 3, 288, 288]$ (GRH) |
| 6.0.462527096236404265312587.1 | x6 - 3x5 + 6x4 + 4582527x3 - 6873795x2 - 6873804x + 5249909047824 | \( -\,3^{7}\cdot 11^{4}\cdot 19^{4}\cdot 577^{4} \) | $S_3$ (as 6T2) | $[3, 3, 3, 3, 3, 387, 387]$ (GRH) |
| 6.0.2883569911983446978703843.1 | x6 - 110017x3 + 1331617195374913 | \( -\,3^{9}\cdot 110017^{4} \) | $C_6$ (as 6T1) | $[12, 4285092]$ (GRH) |
| 6.2.3459612694664949600960000.1 | x6 - 4602x4 - 35490x3 + 7059468x2 - 163324980x - 3294856279 | \( 2^{9}\cdot 3^{10}\cdot 5^{4}\cdot 7^{4}\cdot 13^{5}\cdot 59^{3} \) | $D_{6}$ (as 6T3) | $[3, 3, 42, 27300]$ (GRH) |
| 6.0.4094671299178657790511792.1 | x6 + 57693098928 | \( -\,2^{4}\cdot 3^{11}\cdot 37^{4}\cdot 937^{4} \) | $S_3$ (as 6T2) | $[3, 3, 3, 3, 468, 1404]$ (GRH) |
| 6.0.4409496538448411099324592.1 | x6 + 59869943472 | \( -\,2^{4}\cdot 3^{11}\cdot 35317^{4} \) | $S_3$ (as 6T2) | $[6, 6, 900, 2700]$ (GRH) |
| 6.0.14060108353356563488013232.1 | x6 - 3x5 + 6x4 + 566317x3 - 849480x2 - 849489x + 80181284569 | \( -\,2^{4}\cdot 3^{7}\cdot 11^{4}\cdot 61^{4}\cdot 211^{4} \) | $S_3$ (as 6T2) | $[3, 3, 3, 6, 6, 300, 300]$ (GRH) |
| 6.0.15871954977200820975195312.1 | x6 - 3x5 + 6x4 + 583741x3 - 875616x2 - 875625x + 85191015625 | \( -\,2^{4}\cdot 3^{7}\cdot 11^{4}\cdot 13267^{4} \) | $S_3$ (as 6T2) | $[3, 6, 6, 912, 912]$ (GRH) |
| 6.2.17094879279465894849600000.1 | x6 - 6030x4 - 53550x3 + 12120300x2 - 322906500x - 7403700375 | \( 2^{9}\cdot 3^{11}\cdot 5^{5}\cdot 7^{4}\cdot 17^{4}\cdot 67^{3} \) | $D_{6}$ (as 6T3) | $[2, 12, 12, 35664]$ (GRH) |
| 6.0.41282029709699279545613232.1 | x6 - 3x5 + 6x4 + 741317x3 - 1111980x2 - 1111989x + 137391059569 | \( -\,2^{4}\cdot 3^{11}\cdot 163^{4}\cdot 379^{4} \) | $S_3$ (as 6T2) | $[3, 3, 3, 3, 3, 609, 609]$ (GRH) |
| 6.2.85230795183543158110714368.1 | x6 - 7854x4 - 79186x3 + 20561772x2 - 621926844x - 16375967383 | \( 2^{9}\cdot 3^{6}\cdot 7^{3}\cdot 11^{3}\cdot 17^{5}\cdot 137^{4} \) | $D_{6}$ (as 6T3) | $[2, 2, 2, 4, 466272]$ (GRH) |
| 6.2.430205471990113348029676032.1 | x6 - 40683782568 | \( 2^{9}\cdot 3^{11}\cdot 11^{3}\cdot 13^{5}\cdot 313^{4} \) | $D_{6}$ (as 6T3) | $[2, 2, 2, 24, 132720]$ (GRH) |
| 8.0.51505726964824253923328.6 | x8 + 17704x6 + 97947380x4 + 173406041552x2 + 47968446244322 | \( 2^{31}\cdot 2213^{4} \) | $C_8$ (as 8T1) | $[12040802]$ (GRH) |
| 8.0.61041556230067535740928.4 | x8 + 18472x6 + 106629620x4 + 196966234064x2 + 56849379306722 | \( 2^{31}\cdot 2309^{4} \) | $C_8$ (as 8T1) | $[5, 2339930]$ (GRH) |
| 8.0.68556177175929964986368.4 | x8 + 19016x6 + 113002580x4 + 214885706128x2 + 63847915433282 | \( 2^{31}\cdot 2377^{4} \) | $C_8$ (as 8T1) | $[2, 5457346]$ (GRH) |
| 8.0.69250997748090124894208.4 | x8 + 19064x6 + 113573780x4 + 216517054192x2 + 64495017517442 | \( 2^{31}\cdot 2383^{4} \) | $C_8$ (as 8T1) | $[2, 2, 2, 1419266]$ (GRH) |
| 8.0.72563581026030917255168.4 | x8 + 19288x6 + 116258420x4 + 224239240496x2 + 67580101104482 | \( 2^{31}\cdot 2411^{4} \) | $C_8$ (as 8T1) | $[10725458]$ (GRH) |
| 8.0.77326569182093542191169.1 | x8 - 2x7 + 356x6 - 730x5 + 65271x4 - 13140x3 + 6749348x2 + 4696368x + 277001984 | \( 113^{6}\cdot 439^{4} \) | $C_4\times C_2$ (as 8T2) | $[5, 2081820]$ (GRH) |
| 8.0.109600545209715828752929.1 | x8 - 2x7 + 396x6 - 790x5 + 78231x4 - 22120x3 + 8567148x2 + 5233648x + 374827264 | \( 113^{6}\cdot 479^{4} \) | $C_4\times C_2$ (as 8T2) | $[10232775]$ (GRH) |
| 8.0.130362815225443624625609.2 | x8 - x7 + 5168x6 - 10370x5 + 2054333x4 + 4625727x3 + 196389450x2 + 498535620x + 4913336648 | \( 89^{7}\cdot 233^{4} \) | $C_8$ (as 8T1) | $[6, 1887558]$ (GRH) |
| 8.0.142488437572306293981817.1 | x8 - x7 + 6137x6 + 17x5 + 11853110x4 + 14017888x3 + 7403924288x2 + 18023958784x + 1237516486144 | \( 73^{7}\cdot 337^{4} \) | $C_8$ (as 8T1) | $[10363058]$ (GRH) |
| 8.0.149210098413026196049769.1 | x8 - x7 + 5346x6 - 10726x5 + 2199937x4 + 4945415x3 + 217205660x2 + 551451104x + 5591877632 | \( 89^{7}\cdot 241^{4} \) | $C_8$ (as 8T1) | $[9, 1704258]$ (GRH) |
| 8.0.168630239892922523260609.4 | x8 - 2x7 - 290x6 + 4924x5 + 25657x4 - 1755674x3 + 35342184x2 - 200704608x + 375083136 | \( 193^{6}\cdot 239^{4} \) | $D_4$ (as 8T4) | $[10, 70, 15960]$ (GRH) |
| 8.0.275775274873230615401609.1 | x8 - x7 + 6236x6 - 12506x5 + 3002717x4 + 6704055x3 + 343554510x2 + 872685924x + 10092525752 | \( 89^{7}\cdot 281^{4} \) | $C_8$ (as 8T1) | $[17599874]$ (GRH) |
| 8.0.285652159299235394194297.1 | x8 - x7 + 7305x6 + 17x5 + 16797254x4 + 19841536x3 + 12490358720x2 + 30379679488x + 2466142301696 | \( 73^{7}\cdot 401^{4} \) | $C_8$ (as 8T1) | $[2, 2, 178, 15842]$ (GRH) |
| 8.0.309138612153342029256217.1 | x8 - x7 + 7451x6 + 17x5 + 17475716x4 + 20640448x3 + 13254714272x2 + 32235877936x + 2667266809216 | \( 73^{7}\cdot 409^{4} \) | $C_8$ (as 8T1) | $[10833266]$ (GRH) |
| 8.0.361346036193935794388033.1 | x8 - x7 + 2972x6 - 24130x5 + 1462165x4 - 9651233x3 + 127336054x2 + 38991076x + 1730582744 | \( 47^{4}\cdot 257^{7} \) | $C_8$ (as 8T1) | $[21336918]$ (GRH) |
| 8.0.388339535004847851935737.1 | x8 - x7 + 7889x6 + 17x5 + 19591694x4 + 23131792x3 + 15733563008x2 + 38254933504x + 3344885774848 | \( 73^{7}\cdot 433^{4} \) | $C_8$ (as 8T1) | $[16374434]$ (GRH) |
| 8.0.448999011478441266749497.1 | x8 - x7 + 8181x6 + 17x5 + 21069506x4 + 24871528x3 + 17546939072x2 + 42657527296x + 3863341838336 | \( 73^{7}\cdot 449^{4} \) | $C_8$ (as 8T1) | $[18262642]$ (GRH) |
In order to download results, determine the number of results.