Learn more about

Further refine search

Results (displaying matches 1-50 of 216) Next

Label Polynomial Discriminant Galois group Class group
8.0.279962425744585891967345313193.3 x8 - x7 + 4711x6 + 653257x5 + 31269320x4 + 1485681448x3 + 62048882160x2 + 1357510184208x + 31843864896768 \( 97^{7}\cdot 389^{6} \) $C_8$ (as 8T1) $[2, 2, 8, 378161320]$ (GRH)
8.0.81729569074669588344431934238657.1 x8 - x7 + 16128x6 - 1590878x5 + 108308949x4 - 12464473129x3 + 874558747498x2 - 28290757421944x + 344777897389504 \( 193^{7}\cdot 449^{6} \) $QD_{16}$ (as 8T8) $[2, 2, 2, 8, 8, 23228256]$ (GRH)
8.0.464168143996753120817910253432897.1 x8 - 3x7 + 19234x6 + 2260830x5 + 163692817x4 + 16594676901x3 + 1246746053196x2 + 45581396588928x + 697479143507712 \( 313^{6}\cdot 337^{7} \) $QD_{16}$ (as 8T8) $[2, 6, 1120689624]$ (GRH)
8.0.1510269940117393787434340294825833.1 x8 - x7 + 3434x6 + 466106x5 - 58494895x4 - 4671184537x3 + 298254631492x2 + 83147741664x + 158956300781568 \( 137^{7}\cdot 401^{7} \) $C_8$ (as 8T1) $[13544638952]$ (GRH)
8.0.13897275301014211264403977677961177.2 x8 - x7 + 4715x6 + 734293x5 + 108209412x4 - 9194607652x3 + 1474055710240x2 - 49652339911872x + 2334173324483072 \( 241^{7}\cdot 313^{7} \) $(C_8:C_2):C_2$ (as 8T16) $[2, 2, 4, 8, 111018440]$ (GRH)
8.0.20484103524067689958079314502405129.1 x8 - x7 + 23601x6 - 5517263x5 - 362023474x4 + 91975332368x3 - 814150716160x2 - 397967734046720x + 15240481922613248 \( 421^{6}\cdot 449^{7} \) $C_8$ (as 8T1) $[2, 2, 2, 2, 8, 125367496]$ (GRH)
8.0.3192079979985055450294717870083050969.5 x8 - x7 + 10251x6 + 6188777x5 - 297797660x4 + 39497233544x3 + 8368042437008x2 - 946303903070320x + 49597789483198400 \( 401^{7}\cdot 409^{7} \) $C_8$ (as 8T1) $[2, 4, 1612979912]$ (GRH)
8.0.7043484173213574853891721381764967081.2 x8 - x7 + 11478x6 + 6516386x5 - 588887459x4 - 13801397365x3 + 11680953965900x2 - 914182000547500x + 54366150332000000 \( 409^{7}\cdot 449^{7} \) $C_8$ (as 8T1) $[2, 2, 4, 1092083528]$ (GRH)
10.2.3469919342845454006739336964012500000000.1 x10 - 5x9 + 5x8 + 10x7 - 15x6 + 172465x5 - 431175x4 + 2587150x3 - 3449525x2 + 3018325x + 7436044025 \( 2^{8}\cdot 3^{8}\cdot 5^{11}\cdot 1597^{8} \) $F_5$ (as 10T4) $[10, 10, 14260, 14260]$ (GRH)
16.0.683567948564897299391469349182811817443328.1 x16 + 4199x14 + 5886131x12 + 3978693634x10 + 1482245714409x8 + 318824584999742x6 + 39051900730883446x4 + 2486877913489246478x2 + 61946512496156595137 \( 2^{16}\cdot 17^{15}\cdot 43691^{4} \) $(C_2\times OD_{16}).D_4$ (as 16T591) $[2, 2, 2, 2, 2, 1058994498]$ (GRH)
16.0.683567948564897299391469349182811817443328.2 x16 + 4063x14 + 6007715x12 + 4216341258x10 + 1588534344529x8 + 337055877573450x6 + 40036280260158564x4 + 2475535254818828022x2 + 61946512496156595137 \( 2^{16}\cdot 17^{15}\cdot 43691^{4} \) $(C_2\times OD_{16}).D_4$ (as 16T591) $[2, 2, 2, 2, 2, 1068746342]$ (GRH)
16.0.1861644105089180838863336343231454234279936.1 x16 + 3192x14 - 3680x13 + 3820332x12 - 8222112x11 + 2278069768x10 - 6381521824x9 + 749980009966x8 - 2278581253952x7 + 140107567212424x6 - 406917584361472x5 + 14342083431686636x4 - 34925731551753120x3 + 706802171767051960x2 - 1124404063609193536x + 11373046199801545201 \( 2^{62}\cdot 7^{6}\cdot 193^{4}\cdot 223^{4} \) $(C_2^2\times C_4).C_2^4$ (as 16T471) $[2, 2, 2, 2, 2, 2, 2, 2, 75774660]$ (GRH)
16.0.8461629347780675963909292061418521600000000.1 x16 + 3366x14 + 4288256x12 + 2643188394x10 + 843697669633x8 + 140021879295672x6 + 11844611939032629x4 + 481407719903051007x2 + 7448383238882771641 \( 2^{16}\cdot 5^{8}\cdot 29^{6}\cdot 89^{8}\cdot 109^{4} \) $C_2^2.C_2^5.C_2$ (as 16T493) $[2, 2, 2, 2, 2, 2, 2, 252870404]$ (GRH)
16.0.29786305681426893421813381491703267748478976.1 x16 + 3464x14 - 3216x13 + 4898708x12 - 7958096x11 + 3643957168x10 - 7631842416x9 + 1528170097824x8 - 3619337419376x7 + 358605823359368x6 - 892387439161696x5 + 43925474650991112x4 - 109475242669266480x3 + 2467664760780016224x2 - 5494406389961891840x + 55151228745540959074 \( 2^{66}\cdot 7^{6}\cdot 193^{4}\cdot 223^{4} \) $(C_2^2\times C_4).C_2^4$ (as 16T471) $[2, 2, 2, 2, 2, 2, 2, 6, 106594380]$ (GRH)
16.0.46871787785697452696878168826792882590449664.1 x16 + 1712x14 + 1233350x12 + 488006872x10 + 115758148212x8 + 16792514721616x6 + 1446242915789840x4 + 67056318133293792x2 + 1270028532190841476 \( 2^{48}\cdot 23^{6}\cdot 37^{4}\cdot 24499031^{2} \) 16T1765 $[2, 2, 2, 2723433000]$ (GRH)
16.0.96468058006688010602395260507818496203564253184.1 x16 + 1028x14 + 255458x12 + 23931840x10 + 862829184x8 + 12850493440x6 + 71556958208x4 + 147171966976x2 + 69257396224 \( 2^{44}\cdot 257^{14} \) $C_8\times C_2$ (as 16T5) $[2, 2, 2, 2, 2, 4, 4, 40, 687480]$ (GRH)
16.0.288604193782091750893321301214124833643876581376.2 x16 + 3092x14 + 3763147x12 + 2296419422x10 + 744702238048x8 + 127016546026864x6 + 10768253589679158x4 + 388439643284578428x2 + 3207580110181323556 \( 2^{46}\cdot 239^{4}\cdot 257^{10} \) 16T875 $[2, 2, 2, 2, 2, 2, 6, 149148972]$ (GRH)
16.0.1543488928107008169638324168125095939257028050944.1 x16 + 98688x12 + 30716640x10 + 2073969697x8 + 2840635392x6 + 164025558208x4 - 2243290349568x2 + 5648874013696 \( 2^{48}\cdot 257^{14} \) $C_8\times C_2$ (as 16T5) $[2, 2, 2, 2, 2, 2, 4, 8, 24, 24, 32352]$ (GRH)
16.0.1543488928107008169638324168125095939257028050944.3 x16 + 123360x12 + 3810894945x8 - 521459496960x4 + 17868678762496 \( 2^{48}\cdot 257^{14} \) $C_8\times C_2$ (as 16T5) $[2, 2, 2, 2, 2, 2, 4, 4, 8, 16, 80880]$ (GRH)
16.0.9051792270538665113859285354790637594769776181248.1 x16 + 3264x14 + 3316496x12 + 1304953472x10 + 221639065992x8 + 16702070265472x6 + 490448945740944x4 + 3874220981492640x2 + 5934553794724178 \( 2^{79}\cdot 23^{4}\cdot 31^{8}\cdot 89^{4} \) $C_4.C_2^2\wr C_2$ (as 16T385) $[2, 2, 2, 4, 4, 20, 34192480]$ (GRH)
16.0.9051792270538665113859285354790637594769776181248.2 x16 + 3264x14 + 4140208x12 + 2581228928x10 + 836309669640x8 + 142366611859328x6 + 12437574187407824x4 + 512785191909377632x2 + 7658348535725451218 \( 2^{79}\cdot 23^{4}\cdot 31^{8}\cdot 89^{4} \) $C_4.C_2^2\wr C_2$ (as 16T385) $[2, 2, 2, 2, 2, 4, 20, 34192480]$ (GRH)
16.0.49504953235652560005667952183459368974585759268864.1 x16 + 1928x14 + 1288880x12 + 405962108x10 + 65834061236x8 + 5383868719400x6 + 189111188166776x4 + 1503056414236448x2 + 15977927617600 \( 2^{36}\cdot 7687^{10} \) 16T1543 $[2, 2, 2, 2, 2, 4, 104987608]$ (GRH)
16.0.49504953235652560005667952183459368974585759268864.2 x16 + 1500x14 + 889640x12 + 264096308x10 + 40486683676x8 + 2897987746232x6 + 67780112968120x4 + 460191898925712x2 + 781198698804624 \( 2^{36}\cdot 7687^{10} \) 16T1543 $[2, 2, 2, 2, 2, 4, 161966728]$ (GRH)
16.0.247615754888863175950064888078950980890077741301809.2 x16 - x15 + 369x14 - 7127x13 - 24628x12 - 3860358x11 + 3847802x10 - 31586510x9 + 11790894313x8 + 150438196003x7 + 3045583313341x6 + 28963391474261x5 + 215319701431098x4 + 1030855819624916x3 + 5228711472095080x2 + 2899855979953376x + 99902637257197312 \( 41^{14}\cdot 97^{14} \) $C_8\times C_2$ (as 16T5) $[21, 4338913908]$ (GRH)
16.0.649575421749918056203935283031437604425079449452544.1 x16 + 1501x14 + 911285x12 + 286021943x10 + 49105808800x8 + 4480851471638x6 + 197363433219140x4 + 3937312460664784x2 + 28613530403758336 \( 2^{28}\cdot 193^{8}\cdot 257^{10} \) 16T813 $[2, 2, 2, 2, 2, 4, 24, 8126040]$ (GRH)
16.0.791005910030165719912925444172568170567213001250881.3 x16 - 5x15 + 536x14 - 14970x13 + 504403x12 - 11045491x11 + 220735521x10 - 3445251317x9 + 47662575288x8 - 533426130836x7 + 5232393557019x6 - 40295189035117x5 + 281733439507432x4 - 1457129277599064x3 + 7383199674276536x2 - 21116314559719616x + 31975694368889344 \( 29^{14}\cdot 149^{14} \) $C_2^3.C_4$ (as 16T41) $[2, 24222, 242220]$ (GRH)
16.0.791005910030165719912925444172568170567213001250881.4 x16 - 3x15 + 573x14 + 9272x13 + 337161x12 + 6299195x11 + 87537415x10 + 1429221904x9 + 16277482567x8 + 215209853765x7 + 2402287099291x6 + 20641758474146x5 + 168575519317340x4 + 882336067964976x3 + 4598319446544384x2 + 12600832442989824x + 49455952218418176 \( 29^{14}\cdot 149^{14} \) $C_2^3.C_4$ (as 16T41) $[2, 24222, 242220]$ (GRH)
16.0.791005910030165719912925444172568170567213001250881.5 x16 - 5x15 + 404x14 - 7911x13 + 85309x12 - 1712558x11 + 42103059x10 - 763954787x9 + 20065856528x8 - 378903900861x7 + 3069805875379x6 - 16152690635942x5 + 158678336760608x4 - 1395404638505784x3 + 4213301148768960x2 + 9966977583135840x + 414401005855515456 \( 29^{14}\cdot 149^{14} \) $C_2^3.C_4$ (as 16T36) $[2, 24222, 242220]$ (GRH)
16.0.2598301686999672224815741132125750417700317797810176.1 x16 + 1413x14 + 640747x12 + 122467295x10 + 9850573750x8 + 279518044450x6 + 1590760453744x4 + 708784500408x2 + 1082146816 \( 2^{30}\cdot 193^{8}\cdot 257^{10} \) 16T813 $[2, 2, 2, 2, 2, 4, 12, 32390040]$ (GRH)
16.0.24018728224219728067156294143658245146337540906275473.2 x16 - x15 + 246x14 - 5528x13 - 102364x12 + 2534658x11 + 43785164x10 - 994326206x9 + 13045857327x8 - 278639592799x7 + 5130957769597x6 - 53334252425244x5 + 347355235431558x4 - 1527640572701475x3 + 4651932548849904x2 - 9598577056412940x + 13133394052911819 \( 41^{14}\cdot 97^{15} \) $C_{16}$ (as 16T1) $[13002309512]$ (GRH)
16.0.193851685179255766530952003996759265201819225743449601.5 x16 - x15 + 594x14 + 2531x13 + 47690x12 - 5352141x11 + 51739983x10 + 192556636x9 + 5083665532x8 + 450226956190x7 + 941787543275x6 - 77428720044109x5 - 764954674399913x4 - 18683145716368537x3 - 73879184588145834x2 + 2427071999215910603x + 33380320760954558557 \( 37^{14}\cdot 173^{14} \) $C_8.C_4$ (as 16T49) $[6, 6, 1682050764]$ (GRH)
16.0.3668342962637889127310596327197122046055622675946369169.4 x16 - 7x15 + 757x14 + 17359x13 + 505614x12 + 12895156x11 + 211899620x10 + 7541456698x9 - 1389972933x8 + 1240781089975x7 + 4371887866584x6 - 55659562317467x5 + 4297633387795179x4 - 111896064809531971x3 + 2220052595158974387x2 - 20096776454760585706x + 78442230270956678147 \( 53^{14}\cdot 149^{14} \) $C_8.C_4$ (as 16T49) $[3, 6, 630, 1533420]$ (GRH)
16.0.54602537259435919051622734069846680881723505970000234609.1 x16 - 6x15 + 3581x14 + 35728x13 + 3184374x12 - 7157146x11 + 1115337704x10 - 3559324740x9 - 413101870103x8 - 19670422590640x7 + 1180694075592x6 + 4494586179489760x5 + 79009337564951184x4 - 636825223635723648x3 - 12244752595015384320x2 - 2796479624717236224x + 944525217449845297152 \( 61^{14}\cdot 157^{14} \) $C_8: C_2$ (as 16T6) $[168545, 337090]$ (GRH)
18.0.382767468601979969221900924428079566404384980992.2 x18 - 3x17 - 42x16 + 12x15 + 1512x14 + 1572x13 - 5418x12 - 3414x11 + 258483x10 + 481455x9 + 4287204x8 + 13613802x7 + 73994292x6 + 146257296x5 + 667973280x4 + 855399936x3 + 3840924672x2 + 1876512768x + 11595603968 \( -\,2^{18}\cdot 3^{30}\cdot 13^{14}\cdot 23^{9} \) $S_3 \times C_6$ (as 18T6) $[3, 3, 3, 6, 236316906]$ (GRH)
18.0.1348608123969580736044287667264238937751275533631.6 x18 - 666x15 + 10989x14 - 132534x13 + 504828x12 + 267732x11 - 2869461x10 - 2521772x9 + 77298624x8 + 21004974x7 - 459144729x6 + 1801890306x5 + 9112996548x4 - 24669932040x3 + 41395363200x2 + 65283984000x + 33270400000 \( -\,3^{45}\cdot 37^{17} \) $C_{18}$ (as 18T1) $[14802753096]$ (GRH)
18.0.1968100446373322200925262150357418865721092079616.1 x18 - 7x17 + 4x16 + 184x15 + 128x14 - 8092x13 + 51598x12 - 134342x11 + 478943x10 - 3007341x9 + 21773822x8 - 92692658x7 + 352111696x6 - 1127712400x5 + 4235753024x4 - 12494373536x3 + 32946159232x2 - 50298266368x + 59975185408 \( -\,2^{18}\cdot 31^{9}\cdot 127^{14} \) $S_3 \times C_6$ (as 18T6) $[9, 9, 244021806]$ (GRH)
18.0.15537225845019417529672325781592151434950300401664.2 x18 - 7x17 + 22x16 + 72x15 + 648x14 - 9060x13 + 72318x12 - 272982x11 + 1442715x10 - 7028429x9 + 45186124x8 - 191602578x7 + 838542252x6 - 2810738664x5 + 10903299792x4 - 31071279168x3 + 87450314880x2 - 137349245952x + 194888648704 \( -\,2^{18}\cdot 3^{9}\cdot 13^{9}\cdot 127^{14} \) $S_3 \times C_6$ (as 18T6) $[2, 84, 357158172]$ (GRH)
18.0.17215978016843899580835684099700667905564175265792.1 x18 - 9x17 - 420x16 + 1984x15 + 73770x14 - 37218x13 - 6149376x12 - 16784976x11 + 237244221x10 + 1419179555x9 - 2094160692x8 - 40253540568x7 - 102727801808x6 + 224932172208x5 + 2034413940288x4 + 5797665555712x3 + 9183109401600x2 + 8595850543104x + 4021085863936 \( -\,2^{12}\cdot 3^{24}\cdot 7^{9}\cdot 79^{14} \) $S_3 \times C_6$ (as 18T6) $[2, 2, 4, 12, 84, 1009932]$ (GRH)
18.0.22497960113751479934820492718164014658776000000000.1 x18 - 9x17 - 402x16 + 1840x15 + 69018x14 - 10914x13 - 5537100x12 - 17815248x11 + 205547661x10 + 1433969187x9 - 1050471018x8 - 39884181384x7 - 128655698368x6 + 185836782000x5 + 2638164247776x4 + 9516122868224x3 + 19470659444736x2 + 24153643711488x + 15157286557696 \( -\,2^{12}\cdot 3^{27}\cdot 5^{9}\cdot 79^{14} \) $S_3 \times C_6$ (as 18T6) $[6, 84, 45051972]$ (GRH)
18.0.147244256784536162442327315331004890491666009075712.1 x18 - 2x17 - 127x16 - 1370x15 + 1071x14 + 162946x13 + 2249906x12 + 19230652x11 + 121957908x10 + 608611962x9 + 2449633407x8 + 8020398008x7 + 21278039105x6 + 45104419528x5 + 74302857419x4 + 90626337302x3 + 75780975570x2 + 38197162944x + 8660565481 \( -\,2^{12}\cdot 7^{15}\cdot 19^{9}\cdot 31^{15} \) $S_3 \times C_3$ (as 18T3) $[2, 2, 2, 4, 4, 4, 4, 12, 156, 9516]$ (GRH)
18.0.1235093905746889405718571099119702734980596317089792.1 x18 - 9x17 + 384x16 - 2272x15 + 88605x14 - 658197x13 + 12846028x12 - 64843719x11 + 865327146x10 - 5579169113x9 + 77246982246x8 - 512686378569x7 + 3789040141804x6 - 15288000079185x5 + 92885783574705x4 - 423518882731740x3 + 2727446539429518x2 - 8733433478069253x + 23845975839012979 \( -\,2^{12}\cdot 3^{27}\cdot 17^{9}\cdot 37^{15} \) $S_3 \times C_6$ (as 18T6) $[2, 78, 70196490]$ (GRH)
18.0.2173089240515381294985625698929389621300732316614656.6 x18 + 684x16 + 145692x14 + 10824528x12 + 377384688x10 + 6981100992x8 + 70338466944x6 + 363270583296x4 + 755493868800x2 + 40292160000 \( -\,2^{27}\cdot 3^{45}\cdot 19^{17} \) $C_{18}$ (as 18T1) $[2, 14851834524]$ (GRH)
18.0.2718642342706308433638679144477426237858460895019008.1 x18 + 75x16 - 518x15 + 14895x14 + 38628x13 + 1453312x12 + 695970x11 + 97733346x10 + 422945816x9 + 8555002947x8 + 33622267188x7 + 365903950891x6 + 1580920554276x5 + 17528600923959x4 + 88916584556742x3 + 542518369755228x2 + 1475998825390308x + 4052214442111177 \( -\,2^{24}\cdot 3^{27}\cdot 11^{9}\cdot 37^{14} \) $S_3 \times C_6$ (as 18T6) $[2, 6, 210, 4951590]$ (GRH)
18.0.3266961213891533812087277880596312351679162976508187.2 x18 + 109359x12 + 354417390x6 + 291038813883 \( -\,3^{27}\cdot 1657^{12} \) $S_3 \times C_3$ (as 18T3) $[2, 2, 1050, 2470650]$ (GRH)
18.0.4083569424758367433043797712456360033585527698911232.1 x18 - 9x17 + 12x16 - 410x15 + 10995x14 - 9861x13 + 162726x12 - 3204009x11 + 24015348x10 + 104943021x9 + 1568694924x8 - 152631309x7 + 19476958064x6 + 109343418069x5 + 2476828380501x4 + 13611173843684x3 + 68512294190292x2 + 162135328484937x + 329489799094441 \( -\,2^{12}\cdot 3^{27}\cdot 29^{9}\cdot 37^{14} \) $S_3 \times C_6$ (as 18T6) $[3, 3, 378, 4455864]$ (GRH)
18.0.8880520706942285236653498213029984177183105373284187.2 x18 + 118863x12 + 418673070x6 + 373714754427 \( -\,3^{27}\cdot 1801^{12} \) $S_3 \times C_3$ (as 18T3) $[26, 26, 312, 67704]$ (GRH)
18.0.21156460455554157443184358692743823704081665160523776.1 x18 - 388x16 - 1770x15 + 79167x14 + 461226x13 - 7119103x12 - 69040572x11 + 412426863x10 + 4399169196x9 - 18676098374x8 - 265581279066x7 + 550446017812x6 + 17062555046622x5 + 128931293649937x4 + 697432636061526x3 + 2270159537466107x2 + 2634341655131550x + 6328125825565187 \( -\,2^{12}\cdot 7^{12}\cdot 37^{15}\cdot 47^{9} \) $S_3 \times C_3$ (as 18T3) $[3, 3, 3, 3, 3, 3, 777, 46620]$ (GRH)
18.0.76610513899544453304430517636008399400337408000000000.1 x18 - 4x17 - 161x16 + 122x15 + 12163x14 + 26048x13 - 396092x12 - 1847422x11 + 4445026x10 + 49750964x9 + 101924407x8 - 223146292x7 - 1210841585x6 + 1527209132x5 + 28187586667x4 + 108856477778x3 + 256578470140x2 + 342514005968x + 299674652229 \( -\,2^{30}\cdot 3^{6}\cdot 5^{9}\cdot 7^{14}\cdot 43^{14} \) $S_3 \times C_6$ (as 18T6) $[3, 3, 6, 12, 252, 212688]$ (GRH)
18.0.125658219152626752999993187563351622531489799076360192.1 x18 + 242604x12 + 14701076640x6 + 1728 \( -\,2^{12}\cdot 3^{27}\cdot 1123^{12} \) $S_3 \times C_3$ (as 18T3) $[301, 4515, 58695]$ (GRH)
18.0.844516909583529949970724206594089321365947904000000000.1 x18 - 3x17 - 552x16 + 6240x15 + 53364x14 - 1530168x13 + 13275402x12 - 60135330x11 + 149804439x10 - 232194769x9 + 966780294x8 - 7176130086x7 + 33707047332x6 - 107168086212x5 + 257696335560x4 - 491003942664x3 + 736717649280x2 - 788668438368x + 499240711936 \( -\,2^{18}\cdot 3^{31}\cdot 5^{9}\cdot 7^{14}\cdot 13^{14} \) $S_3 \times C_6$ (as 18T6) $[2, 2, 2, 2, 30, 154037940]$ (GRH)
Next

Download all search results for