Normalized defining polynomial
\( x^{9} - x^{8} - 178 x^{7} + 595 x^{6} + 6775 x^{5} - 25005 x^{4} - 46928 x^{3} + 74456 x^{2} + 85329 x + 18397 \)
Invariants
| Degree: | $9$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[9, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(94879223351246735569=7^{6}\cdot 73^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $165.84$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 73$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(511=7\cdot 73\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{511}(64,·)$, $\chi_{511}(1,·)$, $\chi_{511}(324,·)$, $\chi_{511}(37,·)$, $\chi_{511}(8,·)$, $\chi_{511}(235,·)$, $\chi_{511}(296,·)$, $\chi_{511}(347,·)$, $\chi_{511}(221,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{3} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{51} a^{7} + \frac{7}{51} a^{6} + \frac{13}{51} a^{5} - \frac{5}{51} a^{4} - \frac{10}{51} a^{3} - \frac{5}{51} a^{2} + \frac{13}{51} a - \frac{14}{51}$, $\frac{1}{3259514961213} a^{8} - \frac{515515363}{191736174189} a^{7} - \frac{503858044723}{3259514961213} a^{6} + \frac{333435310738}{1086504987071} a^{5} - \frac{1372813073188}{3259514961213} a^{4} + \frac{165012063878}{3259514961213} a^{3} - \frac{1250510280542}{3259514961213} a^{2} + \frac{170383290089}{3259514961213} a - \frac{1398345419389}{3259514961213}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5808098.73819 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 9 |
| The 9 conjugacy class representatives for $C_9$ |
| Character table for $C_9$ |
Intermediate fields
| 3.3.5329.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }$ | ${\href{/LocalNumberField/3.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/5.9.0.1}{9} }$ | R | ${\href{/LocalNumberField/11.9.0.1}{9} }$ | ${\href{/LocalNumberField/13.9.0.1}{9} }$ | ${\href{/LocalNumberField/17.1.0.1}{1} }^{9}$ | ${\href{/LocalNumberField/19.9.0.1}{9} }$ | ${\href{/LocalNumberField/23.9.0.1}{9} }$ | ${\href{/LocalNumberField/29.9.0.1}{9} }$ | ${\href{/LocalNumberField/31.9.0.1}{9} }$ | ${\href{/LocalNumberField/37.9.0.1}{9} }$ | ${\href{/LocalNumberField/41.9.0.1}{9} }$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/47.9.0.1}{9} }$ | ${\href{/LocalNumberField/53.9.0.1}{9} }$ | ${\href{/LocalNumberField/59.9.0.1}{9} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.3.2.3 | $x^{3} - 28$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 7.3.2.3 | $x^{3} - 28$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.3 | $x^{3} - 28$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| $73$ | 73.9.8.7 | $x^{9} - 1140625$ | $9$ | $1$ | $8$ | $C_9$ | $[\ ]_{9}$ |