Properties

Label 9.9.948792233512...5569.1
Degree $9$
Signature $[9, 0]$
Discriminant $7^{6}\cdot 73^{8}$
Root discriminant $165.84$
Ramified primes $7, 73$
Class number $3$ (GRH)
Class group $[3]$ (GRH)
Galois group $C_9$ (as 9T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![18397, 85329, 74456, -46928, -25005, 6775, 595, -178, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^9 - x^8 - 178*x^7 + 595*x^6 + 6775*x^5 - 25005*x^4 - 46928*x^3 + 74456*x^2 + 85329*x + 18397)
 
gp: K = bnfinit(x^9 - x^8 - 178*x^7 + 595*x^6 + 6775*x^5 - 25005*x^4 - 46928*x^3 + 74456*x^2 + 85329*x + 18397, 1)
 

Normalized defining polynomial

\( x^{9} - x^{8} - 178 x^{7} + 595 x^{6} + 6775 x^{5} - 25005 x^{4} - 46928 x^{3} + 74456 x^{2} + 85329 x + 18397 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $9$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[9, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(94879223351246735569=7^{6}\cdot 73^{8}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $165.84$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $7, 73$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(511=7\cdot 73\)
Dirichlet character group:    $\lbrace$$\chi_{511}(64,·)$, $\chi_{511}(1,·)$, $\chi_{511}(324,·)$, $\chi_{511}(37,·)$, $\chi_{511}(8,·)$, $\chi_{511}(235,·)$, $\chi_{511}(296,·)$, $\chi_{511}(347,·)$, $\chi_{511}(221,·)$$\rbrace$
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{3} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{51} a^{7} + \frac{7}{51} a^{6} + \frac{13}{51} a^{5} - \frac{5}{51} a^{4} - \frac{10}{51} a^{3} - \frac{5}{51} a^{2} + \frac{13}{51} a - \frac{14}{51}$, $\frac{1}{3259514961213} a^{8} - \frac{515515363}{191736174189} a^{7} - \frac{503858044723}{3259514961213} a^{6} + \frac{333435310738}{1086504987071} a^{5} - \frac{1372813073188}{3259514961213} a^{4} + \frac{165012063878}{3259514961213} a^{3} - \frac{1250510280542}{3259514961213} a^{2} + \frac{170383290089}{3259514961213} a - \frac{1398345419389}{3259514961213}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{3}$, which has order $3$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $8$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 5808098.73819 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_9$ (as 9T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 9
The 9 conjugacy class representatives for $C_9$
Character table for $C_9$

Intermediate fields

3.3.5329.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.9.0.1}{9} }$ ${\href{/LocalNumberField/3.3.0.1}{3} }^{3}$ ${\href{/LocalNumberField/5.9.0.1}{9} }$ R ${\href{/LocalNumberField/11.9.0.1}{9} }$ ${\href{/LocalNumberField/13.9.0.1}{9} }$ ${\href{/LocalNumberField/17.1.0.1}{1} }^{9}$ ${\href{/LocalNumberField/19.9.0.1}{9} }$ ${\href{/LocalNumberField/23.9.0.1}{9} }$ ${\href{/LocalNumberField/29.9.0.1}{9} }$ ${\href{/LocalNumberField/31.9.0.1}{9} }$ ${\href{/LocalNumberField/37.9.0.1}{9} }$ ${\href{/LocalNumberField/41.9.0.1}{9} }$ ${\href{/LocalNumberField/43.3.0.1}{3} }^{3}$ ${\href{/LocalNumberField/47.9.0.1}{9} }$ ${\href{/LocalNumberField/53.9.0.1}{9} }$ ${\href{/LocalNumberField/59.9.0.1}{9} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$7$7.3.2.3$x^{3} - 28$$3$$1$$2$$C_3$$[\ ]_{3}$
7.3.2.3$x^{3} - 28$$3$$1$$2$$C_3$$[\ ]_{3}$
7.3.2.3$x^{3} - 28$$3$$1$$2$$C_3$$[\ ]_{3}$
$73$73.9.8.7$x^{9} - 1140625$$9$$1$$8$$C_9$$[\ ]_{9}$