Properties

Label 9.9.84423549813321481.1
Degree $9$
Signature $[9, 0]$
Discriminant $7^{4}\cdot 181^{6}$
Root discriminant $75.98$
Ramified primes $7, 181$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $C_3^2:C_3$ (as 9T7)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-665, -2653, -3297, -776, 1092, 595, -11, -45, -2, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^9 - 2*x^8 - 45*x^7 - 11*x^6 + 595*x^5 + 1092*x^4 - 776*x^3 - 3297*x^2 - 2653*x - 665)
 
gp: K = bnfinit(x^9 - 2*x^8 - 45*x^7 - 11*x^6 + 595*x^5 + 1092*x^4 - 776*x^3 - 3297*x^2 - 2653*x - 665, 1)
 

Normalized defining polynomial

\( x^{9} - 2 x^{8} - 45 x^{7} - 11 x^{6} + 595 x^{5} + 1092 x^{4} - 776 x^{3} - 3297 x^{2} - 2653 x - 665 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $9$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[9, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(84423549813321481=7^{4}\cdot 181^{6}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $75.98$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $7, 181$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $\frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{8} a^{6} - \frac{1}{4} a^{4} - \frac{3}{8} a^{2} - \frac{1}{8}$, $\frac{1}{8} a^{7} - \frac{1}{4} a^{5} + \frac{1}{8} a^{3} + \frac{3}{8} a - \frac{1}{2}$, $\frac{1}{12664} a^{8} - \frac{14}{1583} a^{7} - \frac{389}{12664} a^{6} - \frac{391}{1583} a^{5} + \frac{2747}{12664} a^{4} - \frac{77}{3166} a^{3} - \frac{611}{1583} a^{2} - \frac{1355}{3166} a + \frac{4671}{12664}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $8$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 909282.681762 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$He_3$ (as 9T7):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 27
The 11 conjugacy class representatives for $C_3^2:C_3$
Character table for $C_3^2:C_3$

Intermediate fields

3.3.32761.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Galois closure: data not computed
Degree 9 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.3.0.1}{3} }^{3}$ ${\href{/LocalNumberField/3.3.0.1}{3} }^{3}$ ${\href{/LocalNumberField/5.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{3}$ R ${\href{/LocalNumberField/11.3.0.1}{3} }^{3}$ ${\href{/LocalNumberField/13.3.0.1}{3} }^{3}$ ${\href{/LocalNumberField/17.3.0.1}{3} }^{3}$ ${\href{/LocalNumberField/19.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{3}$ ${\href{/LocalNumberField/23.3.0.1}{3} }^{3}$ ${\href{/LocalNumberField/29.3.0.1}{3} }^{3}$ ${\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{3}$ ${\href{/LocalNumberField/37.3.0.1}{3} }^{3}$ ${\href{/LocalNumberField/41.3.0.1}{3} }^{3}$ ${\href{/LocalNumberField/43.3.0.1}{3} }^{3}$ ${\href{/LocalNumberField/47.3.0.1}{3} }^{3}$ ${\href{/LocalNumberField/53.3.0.1}{3} }^{3}$ ${\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{3}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$7$7.3.2.3$x^{3} - 28$$3$$1$$2$$C_3$$[\ ]_{3}$
7.3.2.1$x^{3} + 14$$3$$1$$2$$C_3$$[\ ]_{3}$
7.3.0.1$x^{3} - x + 2$$1$$3$$0$$C_3$$[\ ]^{3}$
$181$181.9.6.1$x^{9} + 9774 x^{6} + 31810931 x^{3} + 34582249512$$3$$3$$6$$C_3^2$$[\ ]_{3}^{3}$

Artin representations

Label Dimension Conductor Defining polynomial of Artin field $G$ Ind $\chi(c)$
* 1.1.1t1.1c1$1$ $1$ $x$ $C_1$ $1$ $1$
* 1.181.3t1.1c1$1$ $ 181 $ $x^{3} - x^{2} - 60 x + 67$ $C_3$ (as 3T1) $0$ $1$
1.7_181.3t1.2c1$1$ $ 7 \cdot 181 $ $x^{3} - x^{2} - 422 x + 3144$ $C_3$ (as 3T1) $0$ $1$
1.7_181.3t1.1c1$1$ $ 7 \cdot 181 $ $x^{3} - x^{2} - 422 x - 3191$ $C_3$ (as 3T1) $0$ $1$
1.7_181.3t1.1c2$1$ $ 7 \cdot 181 $ $x^{3} - x^{2} - 422 x - 3191$ $C_3$ (as 3T1) $0$ $1$
* 1.181.3t1.1c2$1$ $ 181 $ $x^{3} - x^{2} - 60 x + 67$ $C_3$ (as 3T1) $0$ $1$
1.7.3t1.1c1$1$ $ 7 $ $x^{3} - x^{2} - 2 x + 1$ $C_3$ (as 3T1) $0$ $1$
1.7_181.3t1.2c2$1$ $ 7 \cdot 181 $ $x^{3} - x^{2} - 422 x + 3144$ $C_3$ (as 3T1) $0$ $1$
1.7.3t1.1c2$1$ $ 7 $ $x^{3} - x^{2} - 2 x + 1$ $C_3$ (as 3T1) $0$ $1$
* 3.7e2_181e2.9t7.2c1$3$ $ 7^{2} \cdot 181^{2}$ $x^{9} - 2 x^{8} - 45 x^{7} - 11 x^{6} + 595 x^{5} + 1092 x^{4} - 776 x^{3} - 3297 x^{2} - 2653 x - 665$ $C_3^2:C_3$ (as 9T7) $0$ $3$
* 3.7e2_181e2.9t7.2c2$3$ $ 7^{2} \cdot 181^{2}$ $x^{9} - 2 x^{8} - 45 x^{7} - 11 x^{6} + 595 x^{5} + 1092 x^{4} - 776 x^{3} - 3297 x^{2} - 2653 x - 665$ $C_3^2:C_3$ (as 9T7) $0$ $3$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.