Normalized defining polynomial
\( x^{9} - x^{8} - 46044 x^{7} + 2290792 x^{6} + 604538774 x^{5} - 54192964154 x^{4} - 1082243626268 x^{3} + 258358461584640 x^{2} - 8789861772156959 x + 75454628055435091 \)
Invariants
| Degree: | $9$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[9, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(823197013411488700177278327969031167198339136=2^{6}\cdot 7^{10}\cdot 37^{8}\cdot 263^{4}\cdot 1283^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $97{,}861.42$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 37, 263, 1283$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{4} a^{3} - \frac{1}{4} a^{2} - \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{8} a^{4} - \frac{1}{4} a^{2} - \frac{1}{2} a - \frac{3}{8}$, $\frac{1}{3552} a^{5} + \frac{131}{3552} a^{4} - \frac{31}{1776} a^{3} - \frac{235}{1776} a^{2} + \frac{439}{1184} a - \frac{1381}{3552}$, $\frac{1}{184704} a^{6} - \frac{1}{11544} a^{5} + \frac{7321}{184704} a^{4} + \frac{2605}{46176} a^{3} + \frac{8669}{61568} a^{2} - \frac{7453}{46176} a - \frac{8107}{61568}$, $\frac{1}{738816} a^{7} + \frac{1}{738816} a^{6} - \frac{23}{738816} a^{5} - \frac{6563}{738816} a^{4} + \frac{87499}{738816} a^{3} - \frac{50285}{738816} a^{2} + \frac{129067}{738816} a + \frac{348655}{738816}$, $\frac{1}{31852662746895004330423231488} a^{8} + \frac{35068074485834352271}{612551206671057775585062144} a^{7} + \frac{911267489660129030573}{1137595098103393011800829696} a^{6} - \frac{14057440124392465305761}{142199387262924126475103712} a^{5} + \frac{2830302829728086712605981}{758396732068928674533886464} a^{4} + \frac{16910430083678960998583773}{1137595098103393011800829696} a^{3} + \frac{11158839230759996781024623}{126399455344821445755647744} a^{2} - \frac{112962729992611083319096339}{442398093706875060144767104} a - \frac{8058729287184286904161938419}{31852662746895004330423231488}$
Class group and class number
$C_{9}$, which has order $9$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 33057799402800000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$\PSL(2,8)$ (as 9T27):
| A non-solvable group of order 504 |
| The 9 conjugacy class representatives for $\PSL(2,8)$ |
| Character table for $\PSL(2,8)$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/11.9.0.1}{9} }$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.7.0.1}{7} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.9.0.1}{9} }$ | ${\href{/LocalNumberField/23.7.0.1}{7} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.9.0.1}{9} }$ | ${\href{/LocalNumberField/31.7.0.1}{7} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/41.9.0.1}{9} }$ | ${\href{/LocalNumberField/43.9.0.1}{9} }$ | ${\href{/LocalNumberField/47.9.0.1}{9} }$ | ${\href{/LocalNumberField/53.9.0.1}{9} }$ | ${\href{/LocalNumberField/59.9.0.1}{9} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| $7$ | 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 7.7.9.4 | $x^{7} + 35 x^{3} + 7$ | $7$ | $1$ | $9$ | $D_{7}$ | $[3/2]_{2}$ | |
| $37$ | 37.9.8.4 | $x^{9} + 296$ | $9$ | $1$ | $8$ | $C_9$ | $[\ ]_{9}$ |
| 263 | Data not computed | ||||||
| 1283 | Data not computed | ||||||