Properties

Label 9.9.805...081.2
Degree $9$
Signature $[9, 0]$
Discriminant $8.052\times 10^{19}$
Root discriminant \(162.84\)
Ramified primes $3,37$
Class number $3$ (GRH)
Class group [3] (GRH)
Galois group $C_9$ (as 9T1)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^9 - 333*x^7 + 36963*x^5 - 1519590*x^3 + 16867449*x - 21932749)
 
gp: K = bnfinit(y^9 - 333*y^7 + 36963*y^5 - 1519590*y^3 + 16867449*y - 21932749, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^9 - 333*x^7 + 36963*x^5 - 1519590*x^3 + 16867449*x - 21932749);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^9 - 333*x^7 + 36963*x^5 - 1519590*x^3 + 16867449*x - 21932749)
 

\( x^{9} - 333x^{7} + 36963x^{5} - 1519590x^{3} + 16867449x - 21932749 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $9$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[9, 0]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(80515213381214514081\) \(\medspace = 3^{22}\cdot 37^{6}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(162.84\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $3^{22/9}37^{2/3}\approx 162.84117089348263$
Ramified primes:   \(3\), \(37\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Gal(K/\Q) }$:  $9$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(999=3^{3}\cdot 37\)
Dirichlet character group:    $\lbrace$$\chi_{999}(1,·)$, $\chi_{999}(322,·)$, $\chi_{999}(454,·)$, $\chi_{999}(334,·)$, $\chi_{999}(655,·)$, $\chi_{999}(787,·)$, $\chi_{999}(121,·)$, $\chi_{999}(667,·)$, $\chi_{999}(988,·)$$\rbrace$
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $\frac{1}{37}a^{3}$, $\frac{1}{37}a^{4}$, $\frac{1}{2627}a^{5}-\frac{26}{2627}a^{4}+\frac{28}{2627}a^{3}+\frac{33}{71}a^{2}-\frac{28}{71}a-\frac{7}{71}$, $\frac{1}{97199}a^{6}-\frac{6}{2627}a^{4}-\frac{26}{2627}a^{3}+\frac{9}{71}a^{2}+\frac{7}{71}a-\frac{3}{71}$, $\frac{1}{97199}a^{7}+\frac{31}{2627}a^{4}+\frac{4}{2627}a^{3}-\frac{8}{71}a^{2}-\frac{29}{71}a+\frac{29}{71}$, $\frac{1}{97199}a^{8}+\frac{29}{2627}a^{4}-\frac{28}{2627}a^{3}+\frac{13}{71}a^{2}-\frac{26}{71}a+\frac{4}{71}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

$C_{3}$, which has order $3$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $8$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{4}{97199}a^{6}-\frac{24}{2627}a^{4}-\frac{33}{2627}a^{3}+\frac{36}{71}a^{2}+\frac{99}{71}a-\frac{296}{71}$, $\frac{3}{97199}a^{6}-\frac{18}{2627}a^{4}-\frac{7}{2627}a^{3}+\frac{27}{71}a^{2}+\frac{21}{71}a-\frac{151}{71}$, $\frac{5}{97199}a^{8}+\frac{39}{97199}a^{7}-\frac{1265}{97199}a^{6}-\frac{255}{2627}a^{5}+\frac{2297}{2627}a^{4}+\frac{15613}{2627}a^{3}-\frac{806}{71}a^{2}-\frac{4112}{71}a+\frac{6944}{71}$, $\frac{9}{97199}a^{8}+\frac{85}{97199}a^{7}-\frac{2116}{97199}a^{6}-\frac{533}{2627}a^{5}+\frac{3393}{2627}a^{4}+\frac{30524}{2627}a^{3}-\frac{1057}{71}a^{2}-\frac{8338}{71}a+\frac{12793}{71}$, $\frac{1}{97199}a^{8}-\frac{17}{97199}a^{7}-\frac{189}{97199}a^{6}+\frac{92}{2627}a^{5}+\frac{232}{2627}a^{4}-\frac{4747}{2627}a^{3}-\frac{78}{71}a^{2}+\frac{1609}{71}a-\frac{1986}{71}$, $\frac{6}{97199}a^{8}-\frac{15}{97199}a^{7}-\frac{1883}{97199}a^{6}+\frac{104}{2627}a^{5}+\frac{5037}{2627}a^{4}-\frac{6649}{2627}a^{3}-\frac{4229}{71}a^{2}-\frac{549}{71}a+\frac{13456}{71}$, $\frac{3}{97199}a^{8}+\frac{23}{97199}a^{7}-\frac{780}{97199}a^{6}-\frac{150}{2627}a^{5}+\frac{1570}{2627}a^{4}+\frac{9556}{2627}a^{3}-\frac{897}{71}a^{2}-\frac{3567}{71}a+\frac{7264}{71}$, $\frac{1}{97199}a^{8}+\frac{29}{97199}a^{7}-\frac{404}{97199}a^{6}-\frac{230}{2627}a^{5}+\frac{1593}{2627}a^{4}+\frac{20340}{2627}a^{3}-\frac{2570}{71}a^{2}-\frac{13514}{71}a+\frac{39948}{71}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 2734333.08957 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{9}\cdot(2\pi)^{0}\cdot 2734333.08957 \cdot 3}{2\cdot\sqrt{80515213381214514081}}\cr\approx \mathstrut & 0.234031148563 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^9 - 333*x^7 + 36963*x^5 - 1519590*x^3 + 16867449*x - 21932749)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^9 - 333*x^7 + 36963*x^5 - 1519590*x^3 + 16867449*x - 21932749, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^9 - 333*x^7 + 36963*x^5 - 1519590*x^3 + 16867449*x - 21932749);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^9 - 333*x^7 + 36963*x^5 - 1519590*x^3 + 16867449*x - 21932749);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_9$ (as 9T1):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A cyclic group of order 9
The 9 conjugacy class representatives for $C_9$
Character table for $C_9$

Intermediate fields

\(\Q(\zeta_{9})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.9.0.1}{9} }$ R ${\href{/padicField/5.9.0.1}{9} }$ ${\href{/padicField/7.9.0.1}{9} }$ ${\href{/padicField/11.9.0.1}{9} }$ ${\href{/padicField/13.9.0.1}{9} }$ ${\href{/padicField/17.3.0.1}{3} }^{3}$ ${\href{/padicField/19.3.0.1}{3} }^{3}$ ${\href{/padicField/23.9.0.1}{9} }$ ${\href{/padicField/29.9.0.1}{9} }$ ${\href{/padicField/31.9.0.1}{9} }$ R ${\href{/padicField/41.9.0.1}{9} }$ ${\href{/padicField/43.9.0.1}{9} }$ ${\href{/padicField/47.9.0.1}{9} }$ ${\href{/padicField/53.3.0.1}{3} }^{3}$ ${\href{/padicField/59.9.0.1}{9} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(3\) Copy content Toggle raw display 3.9.22.6$x^{9} + 18 x^{8} + 9 x^{7} + 6 x^{6} + 18 x^{5} + 57$$9$$1$$22$$C_9$$[2, 3]$
\(37\) Copy content Toggle raw display 37.3.2.2$x^{3} + 74$$3$$1$$2$$C_3$$[\ ]_{3}$
37.3.2.2$x^{3} + 74$$3$$1$$2$$C_3$$[\ ]_{3}$
37.3.2.2$x^{3} + 74$$3$$1$$2$$C_3$$[\ ]_{3}$