Normalized defining polynomial
\( x^{9} - 4x^{8} - 52x^{7} - 84x^{6} + 56x^{5} + 182x^{4} + 84x^{3} - 16x^{2} - 13x - 1 \)
Invariants
Degree: | $9$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[9, 0]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(642366916348420476801\) \(\medspace = 3^{8}\cdot 7^{8}\cdot 19^{8}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(205.10\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $3^{4/3}7^{8/9}19^{8/9}\approx 334.21797094964006$ | ||
Ramified primes: | \(3\), \(7\), \(19\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q\) | ||
$\card{ \Aut(K/\Q) }$: | $3$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3}a^{6}-\frac{1}{3}a^{5}-\frac{1}{3}a^{4}+\frac{1}{3}a^{3}+\frac{1}{3}a^{2}+\frac{1}{3}a+\frac{1}{3}$, $\frac{1}{3}a^{7}+\frac{1}{3}a^{5}-\frac{1}{3}a^{3}-\frac{1}{3}a^{2}-\frac{1}{3}a+\frac{1}{3}$, $\frac{1}{3}a^{8}+\frac{1}{3}a^{5}+\frac{1}{3}a^{3}+\frac{1}{3}a^{2}-\frac{1}{3}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
$C_{9}$, which has order $9$ (assuming GRH)
Unit group
Rank: | $8$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $a$, $a+1$, $a^{7}-5a^{6}-47a^{5}-37a^{4}+93a^{3}+89a^{2}-6a-14$, $\frac{7}{3}a^{8}-11a^{7}-\frac{341}{3}a^{6}-114a^{5}+\frac{665}{3}a^{4}+\frac{842}{3}a^{3}-\frac{40}{3}a^{2}-\frac{167}{3}a-8$, $\frac{14}{3}a^{8}-\frac{40}{3}a^{7}-263a^{6}-\frac{2000}{3}a^{5}-260a^{4}+706a^{3}+554a^{2}-\frac{224}{3}a-76$, $66a^{8}-\frac{913}{3}a^{7}-\frac{9760}{3}a^{6}-3508a^{5}+\frac{18328}{3}a^{4}+8138a^{3}+114a^{2}-1123a-\frac{323}{3}$, $53a^{8}-248a^{7}-2588a^{6}-2692a^{5}+4818a^{4}+6402a^{3}+78a^{2}-976a-49$, $a^{8}-a^{7}-65a^{6}-235a^{5}-147a^{4}+373a^{3}+475a^{2}+165a+15$ (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 9716024.4267 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{9}\cdot(2\pi)^{0}\cdot 9716024.4267 \cdot 9}{2\cdot\sqrt{642366916348420476801}}\cr\approx \mathstrut & 0.88324154749 \end{aligned}\] (assuming GRH)
Galois group
A solvable group of order 27 |
The 11 conjugacy class representatives for $C_9:C_3$ |
Character table for $C_9:C_3$ |
Intermediate fields
3.3.17689.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Galois closure: | data not computed |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/padicField/2.9.0.1}{9} }$ | R | ${\href{/padicField/5.9.0.1}{9} }$ | R | ${\href{/padicField/11.9.0.1}{9} }$ | ${\href{/padicField/13.9.0.1}{9} }$ | ${\href{/padicField/17.1.0.1}{1} }^{9}$ | R | ${\href{/padicField/23.3.0.1}{3} }^{2}{,}\,{\href{/padicField/23.1.0.1}{1} }^{3}$ | ${\href{/padicField/29.9.0.1}{9} }$ | ${\href{/padicField/31.9.0.1}{9} }$ | ${\href{/padicField/37.9.0.1}{9} }$ | ${\href{/padicField/41.9.0.1}{9} }$ | ${\href{/padicField/43.9.0.1}{9} }$ | ${\href{/padicField/47.3.0.1}{3} }^{2}{,}\,{\href{/padicField/47.1.0.1}{1} }^{3}$ | ${\href{/padicField/53.9.0.1}{9} }$ | ${\href{/padicField/59.3.0.1}{3} }^{2}{,}\,{\href{/padicField/59.1.0.1}{1} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(3\) | 3.3.4.3 | $x^{3} + 6 x^{2} + 12$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ |
3.3.4.1 | $x^{3} + 6 x^{2} + 21$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ | |
3.3.0.1 | $x^{3} + 2 x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
\(7\) | 7.9.8.2 | $x^{9} + 7$ | $9$ | $1$ | $8$ | $C_9:C_3$ | $[\ ]_{9}^{3}$ |
\(19\) | 19.9.8.2 | $x^{9} + 57$ | $9$ | $1$ | $8$ | $C_9$ | $[\ ]_{9}$ |