/* Data is in the following format Note, if the class group has not been computed, it, the class number, the fundamental units, regulator and whether grh was assumed are all 0. [polynomial, degree, t-number of Galois group, signature [r,s], discriminant, list of ramifying primes, integral basis as polynomials in a, 1 if it is a cm field otherwise 0, class number, class group structure, 1 if grh was assumed and 0 if not, fundamental units, regulator, list of subfields each as a pair [polynomial, number of subfields isomorphic to one defined by this polynomial] ] */ [x^9 - x^8 - 312*x^7 + 1565*x^6 + 22118*x^5 - 146182*x^4 - 420319*x^3 + 3575354*x^2 + 518192*x - 17159528, 9, 1, [9, 0], 59654416235884558133761, [19, 37], [1, a, a^2, a^3, a^4, 1/2*a^5 - 1/2*a^4 - 1/2*a^3 - 1/2*a, 1/2*a^6 - 1/2*a^3 - 1/2*a^2 - 1/2*a, 1/44*a^7 - 1/22*a^6 + 21/44*a^4 + 9/44*a^3 + 19/44*a^2 + 3/11*a - 4/11, 1/85404695519396*a^8 + 189176772536/21351173879849*a^7 - 1562162517835/42702347759698*a^6 - 16481788250445/85404695519396*a^5 - 5603987017891/85404695519396*a^4 + 28472923054713/85404695519396*a^3 - 4909856482767/21351173879849*a^2 + 8475395790637/21351173879849*a + 285194116217/1255951404697], 0, 9, [9], 1, [ (32267778127)/(42702347759698)*a^(8) + (332900943161)/(85404695519396)*a^(7) - (4443110419733)/(21351173879849)*a^(6) - (1168732379112)/(21351173879849)*a^(5) + (121079457069007)/(7764063229036)*a^(4) - (1747958714806817)/(85404695519396)*a^(3) - (33314506311376823)/(85404695519396)*a^(2) + (11862662631868591)/(21351173879849)*a + (3307706878201548)/(1255951404697) , (10026678699)/(42702347759698)*a^(8) - (119323361061)/(85404695519396)*a^(7) - (1415743509489)/(21351173879849)*a^(6) + (14620658089387)/(21351173879849)*a^(5) + (149190561315811)/(85404695519396)*a^(4) - (3428000467228607)/(85404695519396)*a^(3) + (8364089902329691)/(85404695519396)*a^(2) + (4231479784078367)/(21351173879849)*a - (657263336632127)/(1255951404697) , (18979834276)/(21351173879849)*a^(8) - (262468764289)/(85404695519396)*a^(7) - (10459682054861)/(42702347759698)*a^(6) + (85639200795893)/(42702347759698)*a^(5) + (677356591206937)/(85404695519396)*a^(4) - (10281309145753291)/(85404695519396)*a^(3) + (22229556233448013)/(85404695519396)*a^(2) + (22057408602657185)/(42702347759698)*a - (2029493540910268)/(1255951404697) , (245376163379)/(21351173879849)*a^(8) + (6387322961507)/(85404695519396)*a^(7) - (64618297088239)/(21351173879849)*a^(6) - (202665315485799)/(42702347759698)*a^(5) + (18720487375764129)/(85404695519396)*a^(4) - (270344515289175)/(7764063229036)*a^(3) - (39874000738078039)/(7764063229036)*a^(2) + (56364275239525038)/(21351173879849)*a + (33390853717327922)/(1255951404697) , (989668930271)/(85404695519396)*a^(8) + (6515243263939)/(85404695519396)*a^(7) - (130082316643423)/(42702347759698)*a^(6) - (424841966687555)/(85404695519396)*a^(5) + (9440527837035763)/(42702347759698)*a^(4) - (586065908802756)/(21351173879849)*a^(3) - (444136909988913673)/(85404695519396)*a^(2) + (115081427422431253)/(42702347759698)*a + (33566719602182385)/(1255951404697) , (36988903805)/(42702347759698)*a^(8) + (766590596743)/(85404695519396)*a^(7) - (4592667542545)/(21351173879849)*a^(6) - (54650633161175)/(42702347759698)*a^(5) + (1488947930133417)/(85404695519396)*a^(4) + (5145036486829331)/(85404695519396)*a^(3) - (46832074466905381)/(85404695519396)*a^(2) - (41128984200379919)/(42702347759698)*a + (6898659283646116)/(1255951404697) , (112638791637)/(85404695519396)*a^(8) + (876692149077)/(85404695519396)*a^(7) - (6955191281986)/(21351173879849)*a^(6) - (71843715233035)/(85404695519396)*a^(5) + (44188065088899)/(1941015807259)*a^(4) + (256537351308881)/(21351173879849)*a^(3) - (43707700206549921)/(85404695519396)*a^(2) + (2252861862123011)/(42702347759698)*a + (2919411374673388)/(1255951404697) , (10411654353)/(5023805618788)*a^(8) + (27102218639)/(2511902809394)*a^(7) - (1412128591405)/(2511902809394)*a^(6) - (770335532363)/(5023805618788)*a^(5) + (202245021038373)/(5023805618788)*a^(4) - (24645162961001)/(456709601708)*a^(3) - (203780585403233)/(228354800854)*a^(2) + (3460566879566351)/(2511902809394)*a + (4761881646618828)/(1255951404697) ], 84671913.5934, [[x^3 - x^2 - 234*x + 1432, 1]]]