Normalized defining polynomial
\( x^{9} - x^{8} - 312 x^{7} + 1565 x^{6} + 22118 x^{5} - 146182 x^{4} - 420319 x^{3} + 3575354 x^{2} + \cdots - 17159528 \)
Invariants
Degree: | $9$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[9, 0]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(59654416235884558133761\) \(\medspace = 19^{8}\cdot 37^{8}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(339.33\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $19^{8/9}37^{8/9}\approx 339.33367110228545$ | ||
Ramified primes: | \(19\), \(37\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q\) | ||
$\card{ \Gal(K/\Q) }$: | $9$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is Galois and abelian over $\Q$. | |||
Conductor: | \(703=19\cdot 37\) | ||
Dirichlet character group: | $\lbrace$$\chi_{703}(256,·)$, $\chi_{703}(1,·)$, $\chi_{703}(581,·)$, $\chi_{703}(44,·)$, $\chi_{703}(16,·)$, $\chi_{703}(530,·)$, $\chi_{703}(403,·)$, $\chi_{703}(121,·)$, $\chi_{703}(157,·)$$\rbrace$ | ||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a$, $\frac{1}{2}a^{6}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a$, $\frac{1}{44}a^{7}-\frac{1}{22}a^{6}+\frac{21}{44}a^{4}+\frac{9}{44}a^{3}+\frac{19}{44}a^{2}+\frac{3}{11}a-\frac{4}{11}$, $\frac{1}{85404695519396}a^{8}+\frac{189176772536}{21351173879849}a^{7}-\frac{1562162517835}{42702347759698}a^{6}-\frac{16481788250445}{85404695519396}a^{5}-\frac{5603987017891}{85404695519396}a^{4}+\frac{28472923054713}{85404695519396}a^{3}-\frac{4909856482767}{21351173879849}a^{2}+\frac{8475395790637}{21351173879849}a+\frac{285194116217}{1255951404697}$
Monogenic: | No | |
Index: | Not computed | |
Inessential primes: | $2$ |
Class group and class number
$C_{9}$, which has order $9$ (assuming GRH)
Unit group
Rank: | $8$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{32267778127}{42702347759698}a^{8}+\frac{332900943161}{85404695519396}a^{7}-\frac{4443110419733}{21351173879849}a^{6}-\frac{1168732379112}{21351173879849}a^{5}+\frac{121079457069007}{7764063229036}a^{4}-\frac{17\!\cdots\!17}{85404695519396}a^{3}-\frac{33\!\cdots\!23}{85404695519396}a^{2}+\frac{11\!\cdots\!91}{21351173879849}a+\frac{33\!\cdots\!48}{1255951404697}$, $\frac{10026678699}{42702347759698}a^{8}-\frac{119323361061}{85404695519396}a^{7}-\frac{1415743509489}{21351173879849}a^{6}+\frac{14620658089387}{21351173879849}a^{5}+\frac{149190561315811}{85404695519396}a^{4}-\frac{34\!\cdots\!07}{85404695519396}a^{3}+\frac{83\!\cdots\!91}{85404695519396}a^{2}+\frac{42\!\cdots\!67}{21351173879849}a-\frac{657263336632127}{1255951404697}$, $\frac{18979834276}{21351173879849}a^{8}-\frac{262468764289}{85404695519396}a^{7}-\frac{10459682054861}{42702347759698}a^{6}+\frac{85639200795893}{42702347759698}a^{5}+\frac{677356591206937}{85404695519396}a^{4}-\frac{10\!\cdots\!91}{85404695519396}a^{3}+\frac{22\!\cdots\!13}{85404695519396}a^{2}+\frac{22\!\cdots\!85}{42702347759698}a-\frac{20\!\cdots\!68}{1255951404697}$, $\frac{245376163379}{21351173879849}a^{8}+\frac{6387322961507}{85404695519396}a^{7}-\frac{64618297088239}{21351173879849}a^{6}-\frac{202665315485799}{42702347759698}a^{5}+\frac{18\!\cdots\!29}{85404695519396}a^{4}-\frac{270344515289175}{7764063229036}a^{3}-\frac{39\!\cdots\!39}{7764063229036}a^{2}+\frac{56\!\cdots\!38}{21351173879849}a+\frac{33\!\cdots\!22}{1255951404697}$, $\frac{989668930271}{85404695519396}a^{8}+\frac{6515243263939}{85404695519396}a^{7}-\frac{130082316643423}{42702347759698}a^{6}-\frac{424841966687555}{85404695519396}a^{5}+\frac{94\!\cdots\!63}{42702347759698}a^{4}-\frac{586065908802756}{21351173879849}a^{3}-\frac{44\!\cdots\!73}{85404695519396}a^{2}+\frac{11\!\cdots\!53}{42702347759698}a+\frac{33\!\cdots\!85}{1255951404697}$, $\frac{36988903805}{42702347759698}a^{8}+\frac{766590596743}{85404695519396}a^{7}-\frac{4592667542545}{21351173879849}a^{6}-\frac{54650633161175}{42702347759698}a^{5}+\frac{14\!\cdots\!17}{85404695519396}a^{4}+\frac{51\!\cdots\!31}{85404695519396}a^{3}-\frac{46\!\cdots\!81}{85404695519396}a^{2}-\frac{41\!\cdots\!19}{42702347759698}a+\frac{68\!\cdots\!16}{1255951404697}$, $\frac{112638791637}{85404695519396}a^{8}+\frac{876692149077}{85404695519396}a^{7}-\frac{6955191281986}{21351173879849}a^{6}-\frac{71843715233035}{85404695519396}a^{5}+\frac{44188065088899}{1941015807259}a^{4}+\frac{256537351308881}{21351173879849}a^{3}-\frac{43\!\cdots\!21}{85404695519396}a^{2}+\frac{22\!\cdots\!11}{42702347759698}a+\frac{29\!\cdots\!88}{1255951404697}$, $\frac{10411654353}{5023805618788}a^{8}+\frac{27102218639}{2511902809394}a^{7}-\frac{1412128591405}{2511902809394}a^{6}-\frac{770335532363}{5023805618788}a^{5}+\frac{202245021038373}{5023805618788}a^{4}-\frac{24645162961001}{456709601708}a^{3}-\frac{203780585403233}{228354800854}a^{2}+\frac{34\!\cdots\!51}{2511902809394}a+\frac{47\!\cdots\!28}{1255951404697}$ (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 84671913.5934 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{9}\cdot(2\pi)^{0}\cdot 84671913.5934 \cdot 9}{2\cdot\sqrt{59654416235884558133761}}\cr\approx \mathstrut & 0.798731017000 \end{aligned}\] (assuming GRH)
Galois group
A cyclic group of order 9 |
The 9 conjugacy class representatives for $C_9$ |
Character table for $C_9$ |
Intermediate fields
3.3.494209.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/padicField/2.3.0.1}{3} }^{3}$ | ${\href{/padicField/3.9.0.1}{9} }$ | ${\href{/padicField/5.9.0.1}{9} }$ | ${\href{/padicField/7.9.0.1}{9} }$ | ${\href{/padicField/11.1.0.1}{1} }^{9}$ | ${\href{/padicField/13.3.0.1}{3} }^{3}$ | ${\href{/padicField/17.1.0.1}{1} }^{9}$ | R | ${\href{/padicField/23.9.0.1}{9} }$ | ${\href{/padicField/29.9.0.1}{9} }$ | ${\href{/padicField/31.3.0.1}{3} }^{3}$ | R | ${\href{/padicField/41.9.0.1}{9} }$ | ${\href{/padicField/43.9.0.1}{9} }$ | ${\href{/padicField/47.9.0.1}{9} }$ | ${\href{/padicField/53.9.0.1}{9} }$ | ${\href{/padicField/59.3.0.1}{3} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(19\) | 19.9.8.2 | $x^{9} + 57$ | $9$ | $1$ | $8$ | $C_9$ | $[\ ]_{9}$ |
\(37\) | 37.9.8.1 | $x^{9} + 37$ | $9$ | $1$ | $8$ | $C_9$ | $[\ ]_{9}$ |