Normalized defining polynomial
\( x^{9} - 171 x^{7} - 342 x^{6} + 3591 x^{5} + 5130 x^{4} - 26904 x^{3} - 18468 x^{2} + 68913 x - 2375 \)
Invariants
| Degree: | $9$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[9, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(532962204162830310969=3^{22}\cdot 19^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $200.89$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(513=3^{3}\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{513}(64,·)$, $\chi_{513}(1,·)$, $\chi_{513}(139,·)$, $\chi_{513}(358,·)$, $\chi_{513}(427,·)$, $\chi_{513}(175,·)$, $\chi_{513}(340,·)$, $\chi_{513}(214,·)$, $\chi_{513}(505,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{5} a^{5} - \frac{1}{5} a$, $\frac{1}{5} a^{6} - \frac{1}{5} a^{2}$, $\frac{1}{25} a^{7} + \frac{2}{25} a^{6} + \frac{2}{25} a^{5} - \frac{1}{5} a^{4} - \frac{1}{25} a^{3} + \frac{8}{25} a^{2} - \frac{7}{25} a$, $\frac{1}{743828021875} a^{8} + \frac{6870012161}{743828021875} a^{7} - \frac{94889092}{5950624175} a^{6} - \frac{27424038717}{743828021875} a^{5} - \frac{151862467596}{743828021875} a^{4} + \frac{135638788924}{743828021875} a^{3} - \frac{28414832928}{148765604375} a^{2} + \frac{360081196992}{743828021875} a + \frac{39870279}{5950624175}$
Class group and class number
$C_{9}$, which has order $9$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 22548077.9628 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 9 |
| The 9 conjugacy class representatives for $C_9$ |
| Character table for $C_9$ |
Intermediate fields
| 3.3.29241.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }$ | R | ${\href{/LocalNumberField/5.1.0.1}{1} }^{9}$ | ${\href{/LocalNumberField/7.9.0.1}{9} }$ | ${\href{/LocalNumberField/11.9.0.1}{9} }$ | ${\href{/LocalNumberField/13.9.0.1}{9} }$ | ${\href{/LocalNumberField/17.9.0.1}{9} }$ | R | ${\href{/LocalNumberField/23.9.0.1}{9} }$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/31.9.0.1}{9} }$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/41.1.0.1}{1} }^{9}$ | ${\href{/LocalNumberField/43.9.0.1}{9} }$ | ${\href{/LocalNumberField/47.1.0.1}{1} }^{9}$ | ${\href{/LocalNumberField/53.9.0.1}{9} }$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.9.22.9 | $x^{9} + 21 x^{6} + 18 x^{5} + 9 x^{3} + 6$ | $9$ | $1$ | $22$ | $C_9$ | $[2, 3]$ |
| $19$ | 19.9.8.3 | $x^{9} - 77824$ | $9$ | $1$ | $8$ | $C_9$ | $[\ ]_{9}$ |