Normalized defining polynomial
\( x^{9} - 3x^{8} - 36x^{7} + 101x^{6} + 327x^{5} - 921x^{4} - 575x^{3} + 1632x^{2} + 480x - 449 \)
Invariants
| Degree: | $9$ |
| |
| Signature: | $[9, 0]$ |
| |
| Discriminant: |
\(471655843734321\)
\(\medspace = 3^{12}\cdot 31^{6}\)
|
| |
| Root discriminant: | \(42.70\) |
| |
| Galois root discriminant: | $3^{4/3}31^{2/3}\approx 42.697534899657064$ | ||
| Ramified primes: |
\(3\), \(31\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$ $=$ $\Gal(K/\Q)$: | $C_3^2$ |
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(279=3^{2}\cdot 31\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{279}(160,·)$, $\chi_{279}(1,·)$, $\chi_{279}(67,·)$, $\chi_{279}(211,·)$, $\chi_{279}(118,·)$, $\chi_{279}(25,·)$, $\chi_{279}(187,·)$, $\chi_{279}(253,·)$, $\chi_{279}(94,·)$$\rbrace$ | ||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a-\frac{1}{2}$, $\frac{1}{2}a^{7}-\frac{1}{2}$, $\frac{1}{1306507354}a^{8}-\frac{37989939}{1306507354}a^{7}+\frac{42896737}{1306507354}a^{6}+\frac{218118735}{1306507354}a^{5}-\frac{318467565}{1306507354}a^{4}-\frac{934207}{11986306}a^{3}-\frac{550249579}{1306507354}a^{2}-\frac{110649025}{653253677}a-\frac{196756513}{653253677}$
| Monogenic: | No | |
| Index: | Not computed | |
| Inessential primes: | $2$ |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ |
| |
| Narrow class group: | Trivial group, which has order $1$ |
|
Unit group
| Rank: | $8$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{3950274}{653253677}a^{8}-\frac{7583430}{653253677}a^{7}-\frac{138957862}{653253677}a^{6}+\frac{232893930}{653253677}a^{5}+\frac{1136050113}{653253677}a^{4}-\frac{17745132}{5993153}a^{3}-\frac{973838523}{653253677}a^{2}+\frac{1363425116}{653253677}a+\frac{134281107}{653253677}$, $\frac{1357941}{653253677}a^{8}+\frac{370768}{653253677}a^{7}-\frac{45693250}{653253677}a^{6}-\frac{29817612}{653253677}a^{5}+\frac{303027105}{653253677}a^{4}+\frac{2673488}{5993153}a^{3}+\frac{117030332}{653253677}a^{2}-\frac{1245328864}{653253677}a-\frac{738224050}{653253677}$, $\frac{2592333}{1306507354}a^{8}-\frac{3977099}{653253677}a^{7}-\frac{46632306}{653253677}a^{6}+\frac{131355771}{653253677}a^{5}+\frac{416511504}{653253677}a^{4}-\frac{10209310}{5993153}a^{3}-\frac{872061266}{653253677}a^{2}+\frac{3262007657}{1306507354}a+\frac{1416133094}{653253677}$, $\frac{3408291}{1306507354}a^{8}-\frac{4559878}{653253677}a^{7}-\frac{142802903}{1306507354}a^{6}+\frac{291454407}{1306507354}a^{5}+\frac{1802540891}{1306507354}a^{4}-\frac{18970703}{11986306}a^{3}-\frac{6917185207}{1306507354}a^{2}-\frac{728334175}{653253677}a+\frac{1937677351}{1306507354}$, $\frac{11279890}{653253677}a^{8}-\frac{12215469}{1306507354}a^{7}-\frac{403118063}{653253677}a^{6}+\frac{134770957}{653253677}a^{5}+\frac{3369783124}{653253677}a^{4}-\frac{15249942}{5993153}a^{3}-\frac{5361191365}{653253677}a^{2}+\frac{515367316}{653253677}a+\frac{3194658395}{1306507354}$, $\frac{10772719}{1306507354}a^{8}-\frac{665721}{653253677}a^{7}-\frac{211830141}{653253677}a^{6}-\frac{39003597}{653253677}a^{5}+\frac{2282403583}{653253677}a^{4}+\frac{5362173}{5993153}a^{3}-\frac{7577416794}{653253677}a^{2}-\frac{3618337243}{1306507354}a+\frac{2394002606}{653253677}$, $\frac{12672643}{1306507354}a^{8}+\frac{287826}{653253677}a^{7}-\frac{465508491}{1306507354}a^{6}-\frac{166385283}{1306507354}a^{5}+\frac{4201343493}{1306507354}a^{4}+\frac{14623405}{11986306}a^{3}-\frac{8441202895}{1306507354}a^{2}-\frac{2654920513}{653253677}a+\frac{286623887}{1306507354}$, $\frac{3685345}{1306507354}a^{8}-\frac{25217819}{653253677}a^{7}-\frac{37187883}{653253677}a^{6}+\frac{864035106}{653253677}a^{5}-\frac{254417984}{653253677}a^{4}-\frac{63167512}{5993153}a^{3}+\frac{6495456325}{653253677}a^{2}+\frac{12528822679}{1306507354}a-\frac{3396678308}{653253677}$
|
| |
| Regulator: | \( 18035.7055684 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{9}\cdot(2\pi)^{0}\cdot 18035.7055684 \cdot 1}{2\cdot\sqrt{471655843734321}}\cr\approx \mathstrut & 0.212598645070 \end{aligned}\]
Galois group
| An abelian group of order 9 |
| The 9 conjugacy class representatives for $C_3^2$ |
| Character table for $C_3^2$ |
Intermediate fields
| \(\Q(\zeta_{9})^+\), 3.3.77841.2, 3.3.961.1, 3.3.77841.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/padicField/2.3.0.1}{3} }^{3}$ | R | ${\href{/padicField/5.3.0.1}{3} }^{3}$ | ${\href{/padicField/7.3.0.1}{3} }^{3}$ | ${\href{/padicField/11.3.0.1}{3} }^{3}$ | ${\href{/padicField/13.3.0.1}{3} }^{3}$ | ${\href{/padicField/17.3.0.1}{3} }^{3}$ | ${\href{/padicField/19.3.0.1}{3} }^{3}$ | ${\href{/padicField/23.3.0.1}{3} }^{3}$ | ${\href{/padicField/29.3.0.1}{3} }^{3}$ | R | ${\href{/padicField/37.3.0.1}{3} }^{3}$ | ${\href{/padicField/41.3.0.1}{3} }^{3}$ | ${\href{/padicField/43.3.0.1}{3} }^{3}$ | ${\href{/padicField/47.3.0.1}{3} }^{3}$ | ${\href{/padicField/53.3.0.1}{3} }^{3}$ | ${\href{/padicField/59.3.0.1}{3} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(3\)
| 3.3.3.12a2.1 | $x^{9} + 6 x^{7} + 9 x^{6} + 12 x^{5} + 36 x^{4} + 23 x^{3} + 36 x^{2} + 30 x + 10$ | $3$ | $3$ | $12$ | $C_3^2$ | $$[2]^{3}$$ |
|
\(31\)
| 31.3.3.6a1.3 | $x^{9} + 3 x^{7} + 84 x^{6} + 3 x^{5} + 168 x^{4} + 2353 x^{3} + 84 x^{2} + 2352 x + 21983$ | $3$ | $3$ | $6$ | $C_3^2$ | $$[\ ]_{3}^{3}$$ |