Normalized defining polynomial
\( x^{9} - 80 x^{7} - 30 x^{6} + 1843 x^{5} + 1600 x^{4} - 12695 x^{3} - 9720 x^{2} + 23356 x - 1000 \)
Invariants
| Degree: | $9$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[9, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(436625333178768721=13^{6}\cdot 67^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $91.20$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 67$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(871=13\cdot 67\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{871}(640,·)$, $\chi_{871}(1,·)$, $\chi_{871}(68,·)$, $\chi_{871}(230,·)$, $\chi_{871}(833,·)$, $\chi_{871}(841,·)$, $\chi_{871}(269,·)$, $\chi_{871}(29,·)$, $\chi_{871}(573,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{10} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} + \frac{2}{5} a$, $\frac{1}{30} a^{6} - \frac{1}{30} a^{5} + \frac{1}{6} a^{4} - \frac{1}{3} a^{3} - \frac{11}{30} a^{2} - \frac{2}{15} a + \frac{1}{3}$, $\frac{1}{150} a^{7} - \frac{1}{75} a^{6} - \frac{1}{50} a^{5} + \frac{1}{10} a^{4} - \frac{8}{75} a^{3} + \frac{26}{75} a^{2} + \frac{4}{75} a + \frac{1}{3}$, $\frac{1}{168550500} a^{8} - \frac{2899}{28091750} a^{7} - \frac{209936}{42137625} a^{6} - \frac{601447}{84275250} a^{5} + \frac{134893}{56183500} a^{4} - \frac{2674571}{28091750} a^{3} - \frac{26868817}{56183500} a^{2} - \frac{23413513}{84275250} a - \frac{11064}{112367}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4402654.649 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| An abelian group of order 9 |
| The 9 conjugacy class representatives for $C_3^2$ |
| Character table for $C_3^2$ |
Intermediate fields
| 3.3.758641.2, 3.3.758641.1, 3.3.4489.1, 3.3.169.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/3.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/5.1.0.1}{1} }^{9}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{3}$ | R | ${\href{/LocalNumberField/17.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/53.1.0.1}{1} }^{9}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.9.6.1 | $x^{9} + 234 x^{6} + 16900 x^{3} + 474552$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| $67$ | 67.9.6.1 | $x^{9} + 3216 x^{6} + 3443063 x^{3} + 1231925248$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |