Normalized defining polynomial
\( x^{9} - 219 x^{7} - 730 x^{6} + 9855 x^{5} + 36792 x^{4} - 148482 x^{3} - 484866 x^{2} + 609039 x + 810081 \)
Invariants
| Degree: | $9$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[9, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(428585957696282300721=3^{12}\cdot 73^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $196.09$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 73$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(657=3^{2}\cdot 73\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{657}(256,·)$, $\chi_{657}(1,·)$, $\chi_{657}(4,·)$, $\chi_{657}(64,·)$, $\chi_{657}(493,·)$, $\chi_{657}(367,·)$, $\chi_{657}(16,·)$, $\chi_{657}(616,·)$, $\chi_{657}(154,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{3} a^{5} - \frac{1}{3} a^{2}$, $\frac{1}{27} a^{6} + \frac{2}{9} a^{4} + \frac{8}{27} a^{3} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{81} a^{7} + \frac{2}{27} a^{5} + \frac{35}{81} a^{4} + \frac{1}{3} a^{3} + \frac{1}{9} a^{2} + \frac{4}{9} a$, $\frac{1}{413916568623801} a^{8} + \frac{192458090140}{137972189541267} a^{7} + \frac{1995748914698}{137972189541267} a^{6} - \frac{32833978338466}{413916568623801} a^{5} + \frac{32795724327563}{137972189541267} a^{4} + \frac{14660325714680}{45990729847089} a^{3} - \frac{14652602610068}{45990729847089} a^{2} - \frac{4762405218476}{15330243282363} a + \frac{1381028858582}{5110081094121}$
Class group and class number
$C_{3}\times C_{3}$, which has order $9$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4758026.42602 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 9 |
| The 9 conjugacy class representatives for $C_9$ |
| Character table for $C_9$ |
Intermediate fields
| 3.3.5329.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }$ | R | ${\href{/LocalNumberField/5.9.0.1}{9} }$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/11.9.0.1}{9} }$ | ${\href{/LocalNumberField/13.9.0.1}{9} }$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/19.9.0.1}{9} }$ | ${\href{/LocalNumberField/23.9.0.1}{9} }$ | ${\href{/LocalNumberField/29.9.0.1}{9} }$ | ${\href{/LocalNumberField/31.9.0.1}{9} }$ | ${\href{/LocalNumberField/37.9.0.1}{9} }$ | ${\href{/LocalNumberField/41.9.0.1}{9} }$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/47.9.0.1}{9} }$ | ${\href{/LocalNumberField/53.9.0.1}{9} }$ | ${\href{/LocalNumberField/59.9.0.1}{9} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.3.4.1 | $x^{3} - 3 x^{2} + 21$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ |
| 3.3.4.1 | $x^{3} - 3 x^{2} + 21$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ | |
| 3.3.4.1 | $x^{3} - 3 x^{2} + 21$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ | |
| $73$ | 73.9.8.1 | $x^{9} - 73$ | $9$ | $1$ | $8$ | $C_9$ | $[\ ]_{9}$ |