Properties

Label 9.9.358970770651...3009.1
Degree $9$
Signature $[9, 0]$
Discriminant $7^{6}\cdot 13^{6}\cdot 43^{6}$
Root discriminant $248.32$
Ramified primes $7, 13, 43$
Class number $27$ (GRH)
Class group $[3, 9]$ (GRH)
Galois group $C_3^2:C_3$ (as 9T7)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![668732, -1065424, 463531, -1645, -36493, 4747, 745, -143, -3, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^9 - 3*x^8 - 143*x^7 + 745*x^6 + 4747*x^5 - 36493*x^4 - 1645*x^3 + 463531*x^2 - 1065424*x + 668732)
 
gp: K = bnfinit(x^9 - 3*x^8 - 143*x^7 + 745*x^6 + 4747*x^5 - 36493*x^4 - 1645*x^3 + 463531*x^2 - 1065424*x + 668732, 1)
 

Normalized defining polynomial

\( x^{9} - 3 x^{8} - 143 x^{7} + 745 x^{6} + 4747 x^{5} - 36493 x^{4} - 1645 x^{3} + 463531 x^{2} - 1065424 x + 668732 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $9$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[9, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(3589707706515245233009=7^{6}\cdot 13^{6}\cdot 43^{6}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $248.32$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $7, 13, 43$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $\frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{3} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{8} a^{4} - \frac{1}{8} a^{3} + \frac{1}{8} a^{2} + \frac{1}{8} a - \frac{1}{4}$, $\frac{1}{8} a^{5} - \frac{1}{4} a^{2} + \frac{3}{8} a - \frac{1}{4}$, $\frac{1}{864} a^{6} - \frac{11}{432} a^{5} - \frac{41}{432} a^{3} - \frac{7}{32} a^{2} - \frac{13}{27} a + \frac{17}{216}$, $\frac{1}{1728} a^{7} - \frac{1}{1728} a^{6} + \frac{13}{288} a^{5} - \frac{41}{864} a^{4} - \frac{61}{576} a^{3} + \frac{151}{1728} a^{2} - \frac{71}{216} a + \frac{29}{144}$, $\frac{1}{3456} a^{8} + \frac{1}{3456} a^{6} - \frac{5}{288} a^{5} + \frac{167}{3456} a^{4} - \frac{35}{432} a^{3} + \frac{185}{1152} a^{2} + \frac{397}{864} a + \frac{307}{864}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{3}\times C_{9}$, which has order $27$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $8$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 32193734.4638 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$He_3$ (as 9T7):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 27
The 11 conjugacy class representatives for $C_3^2:C_3$
Character table for $C_3^2:C_3$

Intermediate fields

3.3.15311569.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Galois closure: data not computed
Degree 9 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }^{3}$ ${\href{/LocalNumberField/3.3.0.1}{3} }^{3}$ ${\href{/LocalNumberField/5.3.0.1}{3} }^{3}$ R ${\href{/LocalNumberField/11.3.0.1}{3} }^{3}$ R ${\href{/LocalNumberField/17.3.0.1}{3} }^{3}$ ${\href{/LocalNumberField/19.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{3}$ ${\href{/LocalNumberField/23.3.0.1}{3} }^{3}$ ${\href{/LocalNumberField/29.3.0.1}{3} }^{3}$ ${\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{3}$ ${\href{/LocalNumberField/37.3.0.1}{3} }^{3}$ ${\href{/LocalNumberField/41.3.0.1}{3} }^{3}$ R ${\href{/LocalNumberField/47.3.0.1}{3} }^{3}$ ${\href{/LocalNumberField/53.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{3}$ ${\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{3}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$7$7.3.2.2$x^{3} - 7$$3$$1$$2$$C_3$$[\ ]_{3}$
7.3.2.2$x^{3} - 7$$3$$1$$2$$C_3$$[\ ]_{3}$
7.3.2.2$x^{3} - 7$$3$$1$$2$$C_3$$[\ ]_{3}$
$13$13.9.6.1$x^{9} + 234 x^{6} + 16900 x^{3} + 474552$$3$$3$$6$$C_3^2$$[\ ]_{3}^{3}$
$43$43.9.6.1$x^{9} + 1290 x^{6} + 552851 x^{3} + 79507000$$3$$3$$6$$C_3^2$$[\ ]_{3}^{3}$

Artin representations

Label Dimension Conductor Defining polynomial of Artin field $G$ Ind $\chi(c)$
* 1.1.1t1.1c1$1$ $1$ $x$ $C_1$ $1$ $1$
* 1.7_13_43.3t1.4c1$1$ $ 7 \cdot 13 \cdot 43 $ $x^{3} - x^{2} - 1304 x + 17536$ $C_3$ (as 3T1) $0$ $1$
1.13_43.3t1.2c1$1$ $ 13 \cdot 43 $ $x^{3} - x^{2} - 186 x + 207$ $C_3$ (as 3T1) $0$ $1$
1.7.3t1.1c1$1$ $ 7 $ $x^{3} - x^{2} - 2 x + 1$ $C_3$ (as 3T1) $0$ $1$
1.7.3t1.1c2$1$ $ 7 $ $x^{3} - x^{2} - 2 x + 1$ $C_3$ (as 3T1) $0$ $1$
* 1.7_13_43.3t1.4c2$1$ $ 7 \cdot 13 \cdot 43 $ $x^{3} - x^{2} - 1304 x + 17536$ $C_3$ (as 3T1) $0$ $1$
1.7_13_43.3t1.1c1$1$ $ 7 \cdot 13 \cdot 43 $ $x^{3} - x^{2} - 1304 x - 17681$ $C_3$ (as 3T1) $0$ $1$
1.13_43.3t1.2c2$1$ $ 13 \cdot 43 $ $x^{3} - x^{2} - 186 x + 207$ $C_3$ (as 3T1) $0$ $1$
1.7_13_43.3t1.1c2$1$ $ 7 \cdot 13 \cdot 43 $ $x^{3} - x^{2} - 1304 x - 17681$ $C_3$ (as 3T1) $0$ $1$
* 3.7e2_13e2_43e2.9t7.3c1$3$ $ 7^{2} \cdot 13^{2} \cdot 43^{2}$ $x^{9} - 3 x^{8} - 143 x^{7} + 745 x^{6} + 4747 x^{5} - 36493 x^{4} - 1645 x^{3} + 463531 x^{2} - 1065424 x + 668732$ $C_3^2:C_3$ (as 9T7) $0$ $3$
* 3.7e2_13e2_43e2.9t7.3c2$3$ $ 7^{2} \cdot 13^{2} \cdot 43^{2}$ $x^{9} - 3 x^{8} - 143 x^{7} + 745 x^{6} + 4747 x^{5} - 36493 x^{4} - 1645 x^{3} + 463531 x^{2} - 1065424 x + 668732$ $C_3^2:C_3$ (as 9T7) $0$ $3$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.