Normalized defining polynomial
\( x^{9} - 279 x^{7} + 25947 x^{5} - 893730 x^{3} + 8311689 x - 8609599 \)
Invariants
| Degree: | $9$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[9, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(27850805916667920729=3^{22}\cdot 31^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $144.72$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(837=3^{3}\cdot 31\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{837}(160,·)$, $\chi_{837}(1,·)$, $\chi_{837}(769,·)$, $\chi_{837}(490,·)$, $\chi_{837}(718,·)$, $\chi_{837}(559,·)$, $\chi_{837}(211,·)$, $\chi_{837}(439,·)$, $\chi_{837}(280,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{31} a^{3}$, $\frac{1}{31} a^{4}$, $\frac{1}{3379} a^{5} - \frac{24}{3379} a^{4} - \frac{46}{3379} a^{3} - \frac{13}{109} a^{2} + \frac{46}{109} a + \frac{38}{109}$, $\frac{1}{104749} a^{6} - \frac{6}{3379} a^{4} - \frac{24}{3379} a^{3} + \frac{9}{109} a^{2} - \frac{37}{109} a + \frac{47}{109}$, $\frac{1}{104749} a^{7} + \frac{50}{3379} a^{4} + \frac{3}{3379} a^{3} - \frac{6}{109} a^{2} - \frac{4}{109} a + \frac{10}{109}$, $\frac{1}{104749} a^{8} + \frac{4}{3379} a^{4} + \frac{43}{3379} a^{3} - \frac{8}{109} a^{2} - \frac{1}{109} a - \frac{47}{109}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3358979.96303 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 9 |
| The 9 conjugacy class representatives for $C_9$ |
| Character table for $C_9$ |
Intermediate fields
| \(\Q(\zeta_{9})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }$ | R | ${\href{/LocalNumberField/5.9.0.1}{9} }$ | ${\href{/LocalNumberField/7.9.0.1}{9} }$ | ${\href{/LocalNumberField/11.9.0.1}{9} }$ | ${\href{/LocalNumberField/13.9.0.1}{9} }$ | ${\href{/LocalNumberField/17.1.0.1}{1} }^{9}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/23.9.0.1}{9} }$ | ${\href{/LocalNumberField/29.9.0.1}{9} }$ | R | ${\href{/LocalNumberField/37.1.0.1}{1} }^{9}$ | ${\href{/LocalNumberField/41.9.0.1}{9} }$ | ${\href{/LocalNumberField/43.9.0.1}{9} }$ | ${\href{/LocalNumberField/47.9.0.1}{9} }$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/59.9.0.1}{9} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.9.22.6 | $x^{9} + 9 x^{8} + 21 x^{6} + 18 x^{5} + 9 x^{3} + 24$ | $9$ | $1$ | $22$ | $C_9$ | $[2, 3]$ |
| $31$ | 31.9.6.2 | $x^{9} - 961 x^{3} + 268119$ | $3$ | $3$ | $6$ | $C_9$ | $[\ ]_{3}^{3}$ |