Normalized defining polynomial
\( x^{9} - 63 x^{7} + 1323 x^{5} - 10290 x^{3} + 21609 x - 11564 \)
Invariants
| Degree: | $9$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[9, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(180905563815022809=3^{22}\cdot 7^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $82.70$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{434} a^{5} + \frac{3}{62} a^{4} - \frac{5}{62} a^{3} - \frac{11}{31} a^{2} - \frac{27}{62} a - \frac{8}{31}$, $\frac{1}{434} a^{6} - \frac{3}{31} a^{4} + \frac{21}{62} a^{3} + \frac{1}{62} a^{2} - \frac{7}{62} a + \frac{13}{31}$, $\frac{1}{434} a^{7} + \frac{23}{62} a^{4} - \frac{23}{62} a^{3} - \frac{1}{62} a^{2} + \frac{4}{31} a + \frac{5}{31}$, $\frac{1}{434} a^{8} - \frac{5}{31} a^{4} - \frac{1}{31} a^{3} + \frac{8}{31} a^{2} + \frac{17}{62} a - \frac{14}{31}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1730749.39387 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 27 |
| The 11 conjugacy class representatives for $C_9:C_3$ |
| Character table for $C_9:C_3$ |
Intermediate fields
| 3.3.3969.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }^{3}$ | R | ${\href{/LocalNumberField/5.9.0.1}{9} }$ | R | ${\href{/LocalNumberField/11.9.0.1}{9} }$ | ${\href{/LocalNumberField/13.9.0.1}{9} }$ | ${\href{/LocalNumberField/17.9.0.1}{9} }$ | ${\href{/LocalNumberField/19.9.0.1}{9} }$ | ${\href{/LocalNumberField/23.9.0.1}{9} }$ | ${\href{/LocalNumberField/29.9.0.1}{9} }$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/37.9.0.1}{9} }$ | ${\href{/LocalNumberField/41.9.0.1}{9} }$ | ${\href{/LocalNumberField/43.9.0.1}{9} }$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/53.9.0.1}{9} }$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.9.22.14 | $x^{9} + 9 x^{7} + 3 x^{6} + 18 x^{5} + 6$ | $9$ | $1$ | $22$ | $C_9:C_3$ | $[2, 3]^{3}$ |
| $7$ | 7.9.8.3 | $x^{9} - 28$ | $9$ | $1$ | $8$ | $C_9:C_3$ | $[\ ]_{9}^{3}$ |
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| 1.3e2_7.3t1.1c1 | $1$ | $ 3^{2} \cdot 7 $ | $x^{3} - 21 x - 35$ | $C_3$ (as 3T1) | $0$ | $1$ | |
| 1.3e2.3t1.1c1 | $1$ | $ 3^{2}$ | $x^{3} - 3 x - 1$ | $C_3$ (as 3T1) | $0$ | $1$ | |
| * | 1.3e2_7.3t1.2c1 | $1$ | $ 3^{2} \cdot 7 $ | $x^{3} - 21 x - 28$ | $C_3$ (as 3T1) | $0$ | $1$ |
| * | 1.3e2_7.3t1.2c2 | $1$ | $ 3^{2} \cdot 7 $ | $x^{3} - 21 x - 28$ | $C_3$ (as 3T1) | $0$ | $1$ |
| 1.3e2_7.3t1.1c2 | $1$ | $ 3^{2} \cdot 7 $ | $x^{3} - 21 x - 35$ | $C_3$ (as 3T1) | $0$ | $1$ | |
| 1.7.3t1.1c1 | $1$ | $ 7 $ | $x^{3} - x^{2} - 2 x + 1$ | $C_3$ (as 3T1) | $0$ | $1$ | |
| 1.3e2.3t1.1c2 | $1$ | $ 3^{2}$ | $x^{3} - 3 x - 1$ | $C_3$ (as 3T1) | $0$ | $1$ | |
| 1.7.3t1.1c2 | $1$ | $ 7 $ | $x^{3} - x^{2} - 2 x + 1$ | $C_3$ (as 3T1) | $0$ | $1$ | |
| * | 3.3e9_7e3.9t6.1c1 | $3$ | $ 3^{9} \cdot 7^{3}$ | $x^{9} - 63 x^{7} + 1323 x^{5} - 10290 x^{3} + 21609 x - 11564$ | $C_9:C_3$ (as 9T6) | $0$ | $3$ |
| * | 3.3e9_7e3.9t6.1c2 | $3$ | $ 3^{9} \cdot 7^{3}$ | $x^{9} - 63 x^{7} + 1323 x^{5} - 10290 x^{3} + 21609 x - 11564$ | $C_9:C_3$ (as 9T6) | $0$ | $3$ |