Normalized defining polynomial
\( x^{9} - x^{8} - 8x^{7} + 7x^{6} + 21x^{5} - 15x^{4} - 20x^{3} + 10x^{2} + 5x - 1 \)
Invariants
Degree: | $9$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[9, 0]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: |
\(16983563041\)
\(\medspace = 19^{8}\)
| sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(13.70\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Ramified primes: |
\(19\)
| sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
$\card{ \Gal(K/\Q) }$: | $9$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is Galois and abelian over $\Q$. | |||
Conductor: | \(19\) | ||
Dirichlet character group: | $\lbrace$$\chi_{19}(1,·)$, $\chi_{19}(4,·)$, $\chi_{19}(5,·)$, $\chi_{19}(6,·)$, $\chi_{19}(7,·)$, $\chi_{19}(9,·)$, $\chi_{19}(11,·)$, $\chi_{19}(16,·)$, $\chi_{19}(17,·)$$\rbrace$ | ||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$
Monogenic: | Yes | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $8$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: |
\( -1 \)
(order $2$)
| sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: |
$a^{8}-8a^{6}+20a^{4}-16a^{2}+2$, $a^{3}-3a$, $a^{4}-4a^{2}+2$, $a^{6}-6a^{4}+10a^{2}-4$, $a^{6}-6a^{4}+9a^{2}-2$, $a^{3}-3a-1$, $a-1$, $a^{2}-1$
| sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 87.132402653 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
$\displaystyle\lim_{s\to 1} (s-1)\zeta_K(s) = \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}} \approx\frac{2^{9}\cdot(2\pi)^{0}\cdot 87.132402653 \cdot 1}{2\cdot\sqrt{16983563041}}\approx 0.17116117187$
Galois group
A cyclic group of order 9 |
The 9 conjugacy class representatives for $C_9$ |
Character table for $C_9$ |
Intermediate fields
3.3.361.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/padicField/2.9.0.1}{9} }$ | ${\href{/padicField/3.9.0.1}{9} }$ | ${\href{/padicField/5.9.0.1}{9} }$ | ${\href{/padicField/7.3.0.1}{3} }^{3}$ | ${\href{/padicField/11.3.0.1}{3} }^{3}$ | ${\href{/padicField/13.9.0.1}{9} }$ | ${\href{/padicField/17.9.0.1}{9} }$ | R | ${\href{/padicField/23.9.0.1}{9} }$ | ${\href{/padicField/29.9.0.1}{9} }$ | ${\href{/padicField/31.3.0.1}{3} }^{3}$ | ${\href{/padicField/37.1.0.1}{1} }^{9}$ | ${\href{/padicField/41.9.0.1}{9} }$ | ${\href{/padicField/43.9.0.1}{9} }$ | ${\href{/padicField/47.9.0.1}{9} }$ | ${\href{/padicField/53.9.0.1}{9} }$ | ${\href{/padicField/59.9.0.1}{9} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(19\)
| 19.9.8.8 | $x^{9} - 19$ | $9$ | $1$ | $8$ | $C_9$ | $[\ ]_{9}$ |
Artin representations
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
---|---|---|---|---|---|---|---|
* | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
* | 1.19.9t1.a.a | $1$ | $ 19 $ | \(\Q(\zeta_{19})^+\) | $C_9$ (as 9T1) | $0$ | $1$ |
* | 1.19.9t1.a.b | $1$ | $ 19 $ | \(\Q(\zeta_{19})^+\) | $C_9$ (as 9T1) | $0$ | $1$ |
* | 1.19.3t1.a.a | $1$ | $ 19 $ | 3.3.361.1 | $C_3$ (as 3T1) | $0$ | $1$ |
* | 1.19.9t1.a.c | $1$ | $ 19 $ | \(\Q(\zeta_{19})^+\) | $C_9$ (as 9T1) | $0$ | $1$ |
* | 1.19.9t1.a.d | $1$ | $ 19 $ | \(\Q(\zeta_{19})^+\) | $C_9$ (as 9T1) | $0$ | $1$ |
* | 1.19.3t1.a.b | $1$ | $ 19 $ | 3.3.361.1 | $C_3$ (as 3T1) | $0$ | $1$ |
* | 1.19.9t1.a.e | $1$ | $ 19 $ | \(\Q(\zeta_{19})^+\) | $C_9$ (as 9T1) | $0$ | $1$ |
* | 1.19.9t1.a.f | $1$ | $ 19 $ | \(\Q(\zeta_{19})^+\) | $C_9$ (as 9T1) | $0$ | $1$ |