Normalized defining polynomial
\( x^{9} - x^{8} - 164 x^{7} + 233 x^{6} + 7096 x^{5} - 13722 x^{4} - 95237 x^{3} + 217826 x^{2} + 113708 x - 70153 \)
Invariants
| Degree: | $9$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[9, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(16954067440500968089=13^{6}\cdot 37^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $136.96$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(481=13\cdot 37\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{481}(1,·)$, $\chi_{481}(386,·)$, $\chi_{481}(417,·)$, $\chi_{481}(9,·)$, $\chi_{481}(107,·)$, $\chi_{481}(367,·)$, $\chi_{481}(81,·)$, $\chi_{481}(308,·)$, $\chi_{481}(248,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{1067} a^{7} + \frac{397}{1067} a^{6} - \frac{456}{1067} a^{5} - \frac{5}{1067} a^{4} + \frac{42}{1067} a^{3} - \frac{431}{1067} a^{2} - \frac{64}{1067} a - \frac{449}{1067}$, $\frac{1}{821004973504067} a^{8} - \frac{35639498503}{821004973504067} a^{7} - \frac{195594744597790}{821004973504067} a^{6} - \frac{101897762486555}{821004973504067} a^{5} + \frac{184605151748128}{821004973504067} a^{4} + \frac{133517424870728}{821004973504067} a^{3} + \frac{387111489277173}{821004973504067} a^{2} + \frac{287197677700112}{821004973504067} a - \frac{4706626604653}{26484031403357}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3194362.61761 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 9 |
| The 9 conjugacy class representatives for $C_9$ |
| Character table for $C_9$ |
Intermediate fields
| 3.3.1369.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }$ | ${\href{/LocalNumberField/3.9.0.1}{9} }$ | ${\href{/LocalNumberField/5.9.0.1}{9} }$ | ${\href{/LocalNumberField/7.9.0.1}{9} }$ | ${\href{/LocalNumberField/11.1.0.1}{1} }^{9}$ | R | ${\href{/LocalNumberField/17.9.0.1}{9} }$ | ${\href{/LocalNumberField/19.9.0.1}{9} }$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/29.1.0.1}{1} }^{9}$ | ${\href{/LocalNumberField/31.1.0.1}{1} }^{9}$ | R | ${\href{/LocalNumberField/41.9.0.1}{9} }$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/53.9.0.1}{9} }$ | ${\href{/LocalNumberField/59.9.0.1}{9} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.9.6.3 | $x^{9} - 52 x^{6} + 676 x^{3} - 79092$ | $3$ | $3$ | $6$ | $C_9$ | $[\ ]_{3}^{3}$ |
| $37$ | 37.9.8.7 | $x^{9} - 2368$ | $9$ | $1$ | $8$ | $C_9$ | $[\ ]_{9}$ |