Normalized defining polynomial
\( x^{9} - 3 x^{8} - 12000 x^{7} - 295072 x^{6} + 27805575 x^{5} + 1157871573 x^{4} + 7683210630 x^{3} - 82305140040 x^{2} - 848281897593 x - 1186350537195 \)
Invariants
| Degree: | $9$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[9, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(16339134383250936197651486708561524809=3^{4}\cdot 37^{6}\cdot 2977717^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $13{,}639.65$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 37, 2977717$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{6} a^{3} + \frac{1}{3} a^{2} - \frac{1}{2}$, $\frac{1}{6} a^{4} + \frac{1}{3} a^{2} - \frac{1}{2} a$, $\frac{1}{36} a^{5} + \frac{1}{36} a^{4} + \frac{1}{36} a^{3} + \frac{1}{12} a^{2} + \frac{1}{12} a - \frac{1}{4}$, $\frac{1}{180} a^{6} + \frac{1}{90} a^{5} + \frac{7}{90} a^{4} + \frac{1}{45} a^{3} - \frac{13}{30} a^{2} + \frac{11}{30} a - \frac{1}{4}$, $\frac{1}{25920} a^{7} + \frac{1}{1080} a^{6} + \frac{61}{8640} a^{5} - \frac{43}{25920} a^{4} + \frac{89}{1728} a^{3} - \frac{685}{1728} a^{2} + \frac{719}{1440} a - \frac{167}{576}$, $\frac{1}{61662905710112566418911773120} a^{8} + \frac{880652372263325969197313}{61662905710112566418911773120} a^{7} - \frac{23488502144965886157324283}{20554301903370855472970591040} a^{6} + \frac{142126109980933322146206557}{15415726427528141604727943280} a^{5} - \frac{1171319478579222145135852751}{15415726427528141604727943280} a^{4} + \frac{26810947050652628330967943}{1712858491947571289414215920} a^{3} - \frac{1009591725114133611421545823}{20554301903370855472970591040} a^{2} + \frac{151923720800337086186577311}{1370286793558057031531372736} a + \frac{362730291667242617973677105}{1370286793558057031531372736}$
Class group and class number
$C_{21}$, which has order $21$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 13435625715600000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$\PSL(2,8)$ (as 9T27):
| A non-solvable group of order 504 |
| The 9 conjugacy class representatives for $\PSL(2,8)$ |
| Character table for $\PSL(2,8)$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/5.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }$ | ${\href{/LocalNumberField/7.7.0.1}{7} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/17.9.0.1}{9} }$ | ${\href{/LocalNumberField/19.7.0.1}{7} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.7.0.1}{7} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.7.0.1}{7} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.9.0.1}{9} }$ | R | ${\href{/LocalNumberField/41.7.0.1}{7} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.7.0.1}{7} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/53.9.0.1}{9} }$ | ${\href{/LocalNumberField/59.9.0.1}{9} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $37$ | 37.9.6.3 | $x^{9} - 74 x^{6} + 1369 x^{3} - 202612$ | $3$ | $3$ | $6$ | $C_9$ | $[\ ]_{3}^{3}$ |
| 2977717 | Data not computed | ||||||