Normalized defining polynomial
\( x^{9} - x^{8} - 198 x^{7} - 107 x^{6} + 10319 x^{5} + 24533 x^{4} - 118922 x^{3} - 460626 x^{2} - 367949 x + 57721 \)
Invariants
| Degree: | $9$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[9, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(15072974715383053921=19^{8}\cdot 31^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $135.18$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $19, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(589=19\cdot 31\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{589}(1,·)$, $\chi_{589}(397,·)$, $\chi_{589}(366,·)$, $\chi_{589}(125,·)$, $\chi_{589}(149,·)$, $\chi_{589}(311,·)$, $\chi_{589}(408,·)$, $\chi_{589}(346,·)$, $\chi_{589}(253,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{25389131044625913629} a^{8} - \frac{3461495581428674991}{25389131044625913629} a^{7} - \frac{4636411536963443988}{25389131044625913629} a^{6} + \frac{10261061421577558134}{25389131044625913629} a^{5} + \frac{7851541980569232226}{25389131044625913629} a^{4} + \frac{2485602701026744026}{25389131044625913629} a^{3} + \frac{6837413365698912071}{25389131044625913629} a^{2} - \frac{3452416880572531873}{25389131044625913629} a - \frac{23428153471793548}{128878837789979257}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 785284.164362 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 9 |
| The 9 conjugacy class representatives for $C_9$ |
| Character table for $C_9$ |
Intermediate fields
| 3.3.361.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }$ | ${\href{/LocalNumberField/3.9.0.1}{9} }$ | ${\href{/LocalNumberField/5.9.0.1}{9} }$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/13.9.0.1}{9} }$ | ${\href{/LocalNumberField/17.9.0.1}{9} }$ | R | ${\href{/LocalNumberField/23.9.0.1}{9} }$ | ${\href{/LocalNumberField/29.9.0.1}{9} }$ | R | ${\href{/LocalNumberField/37.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/41.9.0.1}{9} }$ | ${\href{/LocalNumberField/43.9.0.1}{9} }$ | ${\href{/LocalNumberField/47.9.0.1}{9} }$ | ${\href{/LocalNumberField/53.9.0.1}{9} }$ | ${\href{/LocalNumberField/59.9.0.1}{9} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $19$ | 19.9.8.6 | $x^{9} + 1216$ | $9$ | $1$ | $8$ | $C_9$ | $[\ ]_{9}$ |
| $31$ | 31.3.2.2 | $x^{3} + 217$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 31.3.2.2 | $x^{3} + 217$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 31.3.2.2 | $x^{3} + 217$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |