Normalized defining polynomial
\( x^{9} - x^{8} - 80 x^{7} - 53 x^{6} + 1668 x^{5} + 3314 x^{4} - 4261 x^{3} - 10795 x^{2} - 2933 x + 1949 \)
Invariants
| Degree: | $9$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[9, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1151936657823500641=181^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $101.58$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $181$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(181\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{181}(1,·)$, $\chi_{181}(132,·)$, $\chi_{181}(65,·)$, $\chi_{181}(73,·)$, $\chi_{181}(43,·)$, $\chi_{181}(80,·)$, $\chi_{181}(48,·)$, $\chi_{181}(39,·)$, $\chi_{181}(62,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{19} a^{7} - \frac{5}{19} a^{6} + \frac{2}{19} a^{5} + \frac{9}{19} a^{4} + \frac{8}{19} a^{3} + \frac{2}{19} a^{2} + \frac{8}{19} a - \frac{6}{19}$, $\frac{1}{19752771127} a^{8} + \frac{50336179}{19752771127} a^{7} + \frac{9746370794}{19752771127} a^{6} - \frac{43281480}{88577449} a^{5} - \frac{448475177}{1039619533} a^{4} - \frac{2722602685}{19752771127} a^{3} + \frac{9001663214}{19752771127} a^{2} + \frac{2107632692}{19752771127} a - \frac{8996957597}{19752771127}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1356171.33617 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 9 |
| The 9 conjugacy class representatives for $C_9$ |
| Character table for $C_9$ |
Intermediate fields
| 3.3.32761.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }$ | ${\href{/LocalNumberField/3.9.0.1}{9} }$ | ${\href{/LocalNumberField/5.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/11.9.0.1}{9} }$ | ${\href{/LocalNumberField/13.9.0.1}{9} }$ | ${\href{/LocalNumberField/17.9.0.1}{9} }$ | ${\href{/LocalNumberField/19.1.0.1}{1} }^{9}$ | ${\href{/LocalNumberField/23.9.0.1}{9} }$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/31.1.0.1}{1} }^{9}$ | ${\href{/LocalNumberField/37.9.0.1}{9} }$ | ${\href{/LocalNumberField/41.9.0.1}{9} }$ | ${\href{/LocalNumberField/43.9.0.1}{9} }$ | ${\href{/LocalNumberField/47.9.0.1}{9} }$ | ${\href{/LocalNumberField/53.9.0.1}{9} }$ | ${\href{/LocalNumberField/59.1.0.1}{1} }^{9}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $181$ | 181.9.8.1 | $x^{9} - 181$ | $9$ | $1$ | $8$ | $C_9$ | $[\ ]_{9}$ |