Properties

Label 9.7.334110914019.1
Degree $9$
Signature $[7, 1]$
Discriminant $-\,3^{9}\cdot 257^{3}$
Root discriminant $19.07$
Ramified primes $3, 257$
Class number $1$
Class group Trivial
Galois Group $S_3\wr S_3$ (as 9T31)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![3, 12, -9, -31, 6, 27, -1, -9, 0, 1]);
sage: x = polygen(QQ); K.<a> = NumberField(x^9 - 9*x^7 - x^6 + 27*x^5 + 6*x^4 - 31*x^3 - 9*x^2 + 12*x + 3)
gp: K = bnfinit(x^9 - 9*x^7 - x^6 + 27*x^5 + 6*x^4 - 31*x^3 - 9*x^2 + 12*x + 3, 1)

Normalized defining polynomial

\(x^{9} \) \(\mathstrut -\mathstrut 9 x^{7} \) \(\mathstrut -\mathstrut x^{6} \) \(\mathstrut +\mathstrut 27 x^{5} \) \(\mathstrut +\mathstrut 6 x^{4} \) \(\mathstrut -\mathstrut 31 x^{3} \) \(\mathstrut -\mathstrut 9 x^{2} \) \(\mathstrut +\mathstrut 12 x \) \(\mathstrut +\mathstrut 3 \)

magma: DefiningPolynomial(K);
sage: K.defining_polynomial()
gp: K.pol

Invariants

Degree:  $9$
magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
Signature:  $[7, 1]$
magma: Signature(K);
sage: K.signature()
gp: K.sign
Discriminant:  \(-334110914019=-\,3^{9}\cdot 257^{3}\)
magma: Discriminant(K);
sage: K.disc()
gp: K.disc
Root discriminant:  $19.07$
magma: Abs(Discriminant(K))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
Ramified primes:  $3, 257$
magma: PrimeDivisors(Discriminant(K));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$

magma: IntegralBasis(K);
sage: K.integral_basis()
gp: K.zk

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
sage: K.class_group().invariants()
gp: K.clgp

Unit group

magma: UK, f := UnitGroup(K);
sage: UK = K.unit_group()
Rank:  $7$
magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
Fundamental units:  \( a + 1 \),  \( a^{2} - 1 \),  \( a^{6} - 6 a^{4} + 9 a^{2} - 4 \),  \( a^{5} + a^{4} - 4 a^{3} - 4 a^{2} + 2 a + 2 \),  \( a^{4} - 4 a^{2} - a + 2 \),  \( a^{6} - 6 a^{4} + a^{3} + 9 a^{2} - 3 a - 2 \),  \( a^{5} + a^{4} - 5 a^{3} - 5 a^{2} + 5 a + 5 \)
magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
Regulator:  \( 521.510374994 \)
magma: Regulator(K);
sage: K.regulator()
gp: K.reg

Galois group

$S_3\wr S_3$ (as 9T31):

magma: GaloisGroup(K);
sage: K.galois_group(type='pari')
gp: polgalois(K.pol)
A solvable group of order 1296
The 22 conjugacy class representatives for $S_3\wr S_3$
Character table for $S_3\wr S_3$ is not computed

Intermediate fields

3.3.257.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 12 sibling: data not computed
Degree 18 siblings: data not computed
Degree 24 siblings: data not computed
Degree 27 siblings: data not computed
Degree 36 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.6.0.1}{6} }{,}\,{\href{/LocalNumberField/2.3.0.1}{3} }$ R ${\href{/LocalNumberField/5.4.0.1}{4} }{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }$ ${\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }$ ${\href{/LocalNumberField/13.9.0.1}{9} }$ ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }$ ${\href{/LocalNumberField/19.3.0.1}{3} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{3}$ ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }$ ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }$ ${\href{/LocalNumberField/31.9.0.1}{9} }$ ${\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ ${\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ ${\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
magma: idealfactors := Factorization(p*Integers(K)); // get the data
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
gp: idealfactors = idealprimedec(K, p); \\ get the data
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$3$3.3.3.1$x^{3} + 6 x + 3$$3$$1$$3$$S_3$$[3/2]_{2}$
3.6.6.2$x^{6} + 6 x^{4} + 6 x^{3} + 18$$3$$2$$6$$C_3^2:C_4$$[3/2, 3/2]_{2}^{2}$
257Data not computed

Artin representations

Label Dimension Conductor Defining polynomial of Artin field $G$ Ind $\chi(c)$
* 1.1.1t1.1c1$1$ $1$ $x$ $C_1$ $1$ $1$
1.257.2t1.1c1$1$ $ 257 $ $x^{2} - x - 64$ $C_2$ (as 2T1) $1$ $1$
1.3.2t1.1c1$1$ $ 3 $ $x^{2} - x + 1$ $C_2$ (as 2T1) $1$ $-1$
1.3_257.2t1.1c1$1$ $ 3 \cdot 257 $ $x^{2} - x + 193$ $C_2$ (as 2T1) $1$ $-1$
2.3e2_257.6t3.1c1$2$ $ 3^{2} \cdot 257 $ $x^{6} - 2 x^{5} + 19 x^{4} - 35 x^{3} + 98 x^{2} - 153 x + 265$ $D_{6}$ (as 6T3) $1$ $-2$
* 2.257.3t2.1c1$2$ $ 257 $ $x^{3} - x^{2} - 4 x + 3$ $S_3$ (as 3T2) $1$ $2$
3.257.4t5.1c1$3$ $ 257 $ $x^{4} + x^{2} - x + 1$ $S_4$ (as 4T5) $1$ $-1$
3.3e3_257.6t11.1c1$3$ $ 3^{3} \cdot 257 $ $x^{6} - x^{5} - 4 x^{4} + 4 x^{3} + 4 x^{2} - 6 x - 3$ $S_4\times C_2$ (as 6T11) $1$ $1$
3.257e2.6t8.1c1$3$ $ 257^{2}$ $x^{4} + x^{2} - x + 1$ $S_4$ (as 4T5) $1$ $-1$
3.3e3_257e2.6t11.1c1$3$ $ 3^{3} \cdot 257^{2}$ $x^{6} - x^{5} - 4 x^{4} + 4 x^{3} + 4 x^{2} - 6 x - 3$ $S_4\times C_2$ (as 6T11) $1$ $1$
* 6.3e9_257e2.9t31.1c1$6$ $ 3^{9} \cdot 257^{2}$ $x^{9} - 9 x^{7} - x^{6} + 27 x^{5} + 6 x^{4} - 31 x^{3} - 9 x^{2} + 12 x + 3$ $S_3\wr S_3$ (as 9T31) $1$ $4$
6.3e9_257e4.18t303.1c1$6$ $ 3^{9} \cdot 257^{4}$ $x^{9} - 9 x^{7} - x^{6} + 27 x^{5} + 6 x^{4} - 31 x^{3} - 9 x^{2} + 12 x + 3$ $S_3\wr S_3$ (as 9T31) $1$ $-4$
6.3e9_257e4.18t320.1c1$6$ $ 3^{9} \cdot 257^{4}$ $x^{9} - 9 x^{7} - x^{6} + 27 x^{5} + 6 x^{4} - 31 x^{3} - 9 x^{2} + 12 x + 3$ $S_3\wr S_3$ (as 9T31) $1$ $4$
6.3e9_257e2.18t312.1c1$6$ $ 3^{9} \cdot 257^{2}$ $x^{9} - 9 x^{7} - x^{6} + 27 x^{5} + 6 x^{4} - 31 x^{3} - 9 x^{2} + 12 x + 3$ $S_3\wr S_3$ (as 9T31) $1$ $-4$
8.3e12_257e6.24t2895.1c1$8$ $ 3^{12} \cdot 257^{6}$ $x^{9} - 9 x^{7} - x^{6} + 27 x^{5} + 6 x^{4} - 31 x^{3} - 9 x^{2} + 12 x + 3$ $S_3\wr S_3$ (as 9T31) $1$ $0$
8.3e12_257e2.12t213.1c1$8$ $ 3^{12} \cdot 257^{2}$ $x^{9} - 9 x^{7} - x^{6} + 27 x^{5} + 6 x^{4} - 31 x^{3} - 9 x^{2} + 12 x + 3$ $S_3\wr S_3$ (as 9T31) $1$ $0$
12.3e18_257e7.36t2219.1c1$12$ $ 3^{18} \cdot 257^{7}$ $x^{9} - 9 x^{7} - x^{6} + 27 x^{5} + 6 x^{4} - 31 x^{3} - 9 x^{2} + 12 x + 3$ $S_3\wr S_3$ (as 9T31) $1$ $-4$
12.3e18_257e5.36t2214.1c1$12$ $ 3^{18} \cdot 257^{5}$ $x^{9} - 9 x^{7} - x^{6} + 27 x^{5} + 6 x^{4} - 31 x^{3} - 9 x^{2} + 12 x + 3$ $S_3\wr S_3$ (as 9T31) $1$ $-4$
12.3e18_257e6.36t2210.1c1$12$ $ 3^{18} \cdot 257^{6}$ $x^{9} - 9 x^{7} - x^{6} + 27 x^{5} + 6 x^{4} - 31 x^{3} - 9 x^{2} + 12 x + 3$ $S_3\wr S_3$ (as 9T31) $1$ $0$
12.3e18_257e7.36t2216.2c1$12$ $ 3^{18} \cdot 257^{7}$ $x^{9} - 9 x^{7} - x^{6} + 27 x^{5} + 6 x^{4} - 31 x^{3} - 9 x^{2} + 12 x + 3$ $S_3\wr S_3$ (as 9T31) $1$ $4$
12.3e18_257e5.18t315.2c1$12$ $ 3^{18} \cdot 257^{5}$ $x^{9} - 9 x^{7} - x^{6} + 27 x^{5} + 6 x^{4} - 31 x^{3} - 9 x^{2} + 12 x + 3$ $S_3\wr S_3$ (as 9T31) $1$ $4$
16.3e24_257e8.24t2912.2c1$16$ $ 3^{24} \cdot 257^{8}$ $x^{9} - 9 x^{7} - x^{6} + 27 x^{5} + 6 x^{4} - 31 x^{3} - 9 x^{2} + 12 x + 3$ $S_3\wr S_3$ (as 9T31) $1$ $0$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.