Properties

Label 9.5.24112521369.1
Degree $9$
Signature $[5, 2]$
Discriminant $3^{9}\cdot 107^{3}$
Root discriminant $14.24$
Ramified primes $3, 107$
Class number $1$
Class group Trivial
Galois group $(((C_3 \times (C_3^2 : C_2)) : C_2) : C_3) : C_2$ (as 9T29)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 6, 3, -10, 3, -6, -4, 3, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^9 + 3*x^7 - 4*x^6 - 6*x^5 + 3*x^4 - 10*x^3 + 3*x^2 + 6*x + 1)
 
gp: K = bnfinit(x^9 + 3*x^7 - 4*x^6 - 6*x^5 + 3*x^4 - 10*x^3 + 3*x^2 + 6*x + 1, 1)
 

Normalized defining polynomial

\( x^{9} + 3 x^{7} - 4 x^{6} - 6 x^{5} + 3 x^{4} - 10 x^{3} + 3 x^{2} + 6 x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $9$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[5, 2]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(24112521369=3^{9}\cdot 107^{3}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $14.24$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 107$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{1239} a^{8} + \frac{422}{1239} a^{7} - \frac{47}{177} a^{6} - \frac{74}{1239} a^{5} - \frac{37}{177} a^{4} - \frac{263}{1239} a^{3} + \frac{514}{1239} a^{2} + \frac{86}{1239} a + \frac{367}{1239}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $6$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 105.680321556 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$(((C_3 \times (C_3^2 : C_2)) : C_2) : C_3) : C_2$ (as 9T29):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 648
The 17 conjugacy class representatives for $(((C_3 \times (C_3^2 : C_2)) : C_2) : C_3) : C_2$
Character table for $(((C_3 \times (C_3^2 : C_2)) : C_2) : C_3) : C_2$

Intermediate fields

3.3.321.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 12 sibling: data not computed
Degree 18 siblings: data not computed
Degree 24 siblings: data not computed
Degree 27 siblings: data not computed
Degree 36 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.9.0.1}{9} }$ R ${\href{/LocalNumberField/5.9.0.1}{9} }$ ${\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }$ ${\href{/LocalNumberField/13.9.0.1}{9} }$ ${\href{/LocalNumberField/17.3.0.1}{3} }^{3}$ ${\href{/LocalNumberField/19.9.0.1}{9} }$ ${\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }$ ${\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ ${\href{/LocalNumberField/37.9.0.1}{9} }$ ${\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }$ ${\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ ${\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{5}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$3$3.3.3.1$x^{3} + 6 x + 3$$3$$1$$3$$S_3$$[3/2]_{2}$
3.6.6.6$x^{6} + 3 x + 3$$6$$1$$6$$C_3^2:D_4$$[5/4, 5/4]_{4}^{2}$
107Data not computed

Artin representations

Label Dimension Conductor Defining polynomial of Artin field $G$ Ind $\chi(c)$
* 1.1.1t1.1c1$1$ $1$ $x$ $C_1$ $1$ $1$
1.3_107.2t1.1c1$1$ $ 3 \cdot 107 $ $x^{2} - x - 80$ $C_2$ (as 2T1) $1$ $1$
* 2.3_107.3t2.1c1$2$ $ 3 \cdot 107 $ $x^{3} - x^{2} - 4 x + 1$ $S_3$ (as 3T2) $1$ $2$
3.3e3_107.4t5.1c1$3$ $ 3^{3} \cdot 107 $ $x^{4} - x^{3} + 3 x^{2} + 2 x + 1$ $S_4$ (as 4T5) $1$ $-1$
3.3e2_107e2.6t8.2c1$3$ $ 3^{2} \cdot 107^{2}$ $x^{4} - x^{3} + 3 x^{2} + 2 x + 1$ $S_4$ (as 4T5) $1$ $-1$
4.3e6_107e3.24t1527.1c1$4$ $ 3^{6} \cdot 107^{3}$ $x^{9} + 3 x^{7} - 4 x^{6} - 6 x^{5} + 3 x^{4} - 10 x^{3} + 3 x^{2} + 6 x + 1$ $(((C_3 \times (C_3^2 : C_2)) : C_2) : C_3) : C_2$ (as 9T29) $0$ $0$
4.3e6_107.12t175.1c1$4$ $ 3^{6} \cdot 107 $ $x^{9} + 3 x^{7} - 4 x^{6} - 6 x^{5} + 3 x^{4} - 10 x^{3} + 3 x^{2} + 6 x + 1$ $(((C_3 \times (C_3^2 : C_2)) : C_2) : C_3) : C_2$ (as 9T29) $0$ $0$
4.3e6_107.12t175.1c2$4$ $ 3^{6} \cdot 107 $ $x^{9} + 3 x^{7} - 4 x^{6} - 6 x^{5} + 3 x^{4} - 10 x^{3} + 3 x^{2} + 6 x + 1$ $(((C_3 \times (C_3^2 : C_2)) : C_2) : C_3) : C_2$ (as 9T29) $0$ $0$
4.3e6_107e3.24t1527.1c2$4$ $ 3^{6} \cdot 107^{3}$ $x^{9} + 3 x^{7} - 4 x^{6} - 6 x^{5} + 3 x^{4} - 10 x^{3} + 3 x^{2} + 6 x + 1$ $(((C_3 \times (C_3^2 : C_2)) : C_2) : C_3) : C_2$ (as 9T29) $0$ $0$
6.3e8_107e4.18t223.1c1$6$ $ 3^{8} \cdot 107^{4}$ $x^{9} + 3 x^{7} - 4 x^{6} - 6 x^{5} + 3 x^{4} - 10 x^{3} + 3 x^{2} + 6 x + 1$ $(((C_3 \times (C_3^2 : C_2)) : C_2) : C_3) : C_2$ (as 9T29) $1$ $2$
* 6.3e8_107e2.9t29.1c1$6$ $ 3^{8} \cdot 107^{2}$ $x^{9} + 3 x^{7} - 4 x^{6} - 6 x^{5} + 3 x^{4} - 10 x^{3} + 3 x^{2} + 6 x + 1$ $(((C_3 \times (C_3^2 : C_2)) : C_2) : C_3) : C_2$ (as 9T29) $1$ $2$
6.3e8_107e3.36t1131.1c1$6$ $ 3^{8} \cdot 107^{3}$ $x^{9} + 3 x^{7} - 4 x^{6} - 6 x^{5} + 3 x^{4} - 10 x^{3} + 3 x^{2} + 6 x + 1$ $(((C_3 \times (C_3^2 : C_2)) : C_2) : C_3) : C_2$ (as 9T29) $0$ $-2$
6.3e8_107e3.36t1131.1c2$6$ $ 3^{8} \cdot 107^{3}$ $x^{9} + 3 x^{7} - 4 x^{6} - 6 x^{5} + 3 x^{4} - 10 x^{3} + 3 x^{2} + 6 x + 1$ $(((C_3 \times (C_3^2 : C_2)) : C_2) : C_3) : C_2$ (as 9T29) $0$ $-2$
8.3e12_107e4.24t1540.1c1$8$ $ 3^{12} \cdot 107^{4}$ $x^{9} + 3 x^{7} - 4 x^{6} - 6 x^{5} + 3 x^{4} - 10 x^{3} + 3 x^{2} + 6 x + 1$ $(((C_3 \times (C_3^2 : C_2)) : C_2) : C_3) : C_2$ (as 9T29) $0$ $0$
8.3e12_107e4.24t1540.1c2$8$ $ 3^{12} \cdot 107^{4}$ $x^{9} + 3 x^{7} - 4 x^{6} - 6 x^{5} + 3 x^{4} - 10 x^{3} + 3 x^{2} + 6 x + 1$ $(((C_3 \times (C_3^2 : C_2)) : C_2) : C_3) : C_2$ (as 9T29) $0$ $0$
12.3e17_107e5.18t219.1c1$12$ $ 3^{17} \cdot 107^{5}$ $x^{9} + 3 x^{7} - 4 x^{6} - 6 x^{5} + 3 x^{4} - 10 x^{3} + 3 x^{2} + 6 x + 1$ $(((C_3 \times (C_3^2 : C_2)) : C_2) : C_3) : C_2$ (as 9T29) $1$ $0$
12.3e17_107e7.36t1237.1c1$12$ $ 3^{17} \cdot 107^{7}$ $x^{9} + 3 x^{7} - 4 x^{6} - 6 x^{5} + 3 x^{4} - 10 x^{3} + 3 x^{2} + 6 x + 1$ $(((C_3 \times (C_3^2 : C_2)) : C_2) : C_3) : C_2$ (as 9T29) $1$ $0$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.