Properties

Label 9.5.17982892873895481.1
Degree $9$
Signature $[5, 2]$
Discriminant $1.798\times 10^{16}$
Root discriminant \(63.99\)
Ramified primes $3,7,19$
Class number $9$
Class group [9]
Galois group $((C_3 \times (C_3^2 : C_2)) : C_2) : C_3$ (as 9T25)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^9 - x^8 - 27*x^7 + 45*x^6 + 192*x^5 - 376*x^4 - 267*x^3 + 276*x^2 + 423*x + 531)
 
gp: K = bnfinit(y^9 - y^8 - 27*y^7 + 45*y^6 + 192*y^5 - 376*y^4 - 267*y^3 + 276*y^2 + 423*y + 531, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^9 - x^8 - 27*x^7 + 45*x^6 + 192*x^5 - 376*x^4 - 267*x^3 + 276*x^2 + 423*x + 531);
 
oscar: Qx, x = polynomial_ring(QQ); K, a = number_field(x^9 - x^8 - 27*x^7 + 45*x^6 + 192*x^5 - 376*x^4 - 267*x^3 + 276*x^2 + 423*x + 531)
 

\( x^{9} - x^{8} - 27x^{7} + 45x^{6} + 192x^{5} - 376x^{4} - 267x^{3} + 276x^{2} + 423x + 531 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $9$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[5, 2]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(17982892873895481\) \(\medspace = 3^{2}\cdot 7^{6}\cdot 19^{8}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(63.99\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $3^{1/2}7^{2/3}19^{8/9}\approx 86.82188052060228$
Ramified primes:   \(3\), \(7\), \(19\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3}a^{6}+\frac{1}{3}a^{5}-\frac{1}{3}a^{4}+\frac{1}{3}a^{3}-\frac{1}{3}a^{2}$, $\frac{1}{9}a^{7}+\frac{1}{9}a^{6}+\frac{2}{9}a^{5}-\frac{2}{9}a^{4}+\frac{2}{9}a^{3}+\frac{1}{3}a^{2}+\frac{1}{3}a$, $\frac{1}{144171}a^{8}+\frac{103}{16019}a^{7}-\frac{20816}{144171}a^{6}-\frac{62365}{144171}a^{5}+\frac{2119}{144171}a^{4}+\frac{27757}{144171}a^{3}+\frac{1744}{16019}a^{2}+\frac{1631}{48057}a+\frac{2641}{16019}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $3$

Class group and class number

$C_{9}$, which has order $9$

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $6$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{964}{48057}a^{8}+\frac{5711}{144171}a^{7}-\frac{64546}{144171}a^{6}-\frac{65735}{144171}a^{5}+\frac{425384}{144171}a^{4}+\frac{194263}{144171}a^{3}-\frac{167201}{48057}a^{2}-\frac{217000}{48057}a-\frac{67367}{16019}$, $\frac{826}{144171}a^{8}-\frac{1070}{48057}a^{7}-\frac{37667}{144171}a^{6}+\frac{51671}{144171}a^{5}+\frac{356641}{144171}a^{4}-\frac{188135}{144171}a^{3}-\frac{211745}{48057}a^{2}-\frac{238675}{48057}a-\frac{45175}{16019}$, $\frac{998}{144171}a^{8}-\frac{3956}{144171}a^{7}-\frac{3307}{16019}a^{6}+\frac{11742}{16019}a^{5}+\frac{19607}{16019}a^{4}-\frac{636125}{144171}a^{3}+\frac{47399}{48057}a^{2}-\frac{70276}{48057}a+\frac{40640}{16019}$, $\frac{207}{16019}a^{8}-\frac{339}{16019}a^{7}-\frac{15422}{48057}a^{6}+\frac{37315}{48057}a^{5}+\frac{82436}{48057}a^{4}-\frac{271670}{48057}a^{3}+\frac{55721}{48057}a^{2}+\frac{35692}{16019}a+\frac{66426}{16019}$, $\frac{1640}{144171}a^{8}-\frac{1525}{144171}a^{7}-\frac{49808}{144171}a^{6}+\frac{66791}{144171}a^{5}+\frac{463588}{144171}a^{4}-\frac{209753}{48057}a^{3}-\frac{534331}{48057}a^{2}+\frac{160079}{16019}a+\frac{246395}{16019}$, $\frac{3623}{48057}a^{8}+\frac{15631}{144171}a^{7}-\frac{253052}{144171}a^{6}-\frac{129352}{144171}a^{5}+\frac{1726141}{144171}a^{4}+\frac{197234}{144171}a^{3}-\frac{785773}{48057}a^{2}-\frac{934796}{48057}a-\frac{257323}{16019}$ Copy content Toggle raw display
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 27843.7285838 \)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{5}\cdot(2\pi)^{2}\cdot 27843.7285838 \cdot 9}{2\cdot\sqrt{17982892873895481}}\cr\approx \mathstrut & 1.18037456301 \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^9 - x^8 - 27*x^7 + 45*x^6 + 192*x^5 - 376*x^4 - 267*x^3 + 276*x^2 + 423*x + 531)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^9 - x^8 - 27*x^7 + 45*x^6 + 192*x^5 - 376*x^4 - 267*x^3 + 276*x^2 + 423*x + 531, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^9 - x^8 - 27*x^7 + 45*x^6 + 192*x^5 - 376*x^4 - 267*x^3 + 276*x^2 + 423*x + 531);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^9 - x^8 - 27*x^7 + 45*x^6 + 192*x^5 - 376*x^4 - 267*x^3 + 276*x^2 + 423*x + 531);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_3^3:A_4$ (as 9T25):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 324
The 13 conjugacy class representatives for $((C_3 \times (C_3^2 : C_2)) : C_2) : C_3$
Character table for $((C_3 \times (C_3^2 : C_2)) : C_2) : C_3$

Intermediate fields

3.3.17689.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 12 siblings: data not computed
Degree 18 siblings: data not computed
Degree 27 siblings: data not computed
Degree 36 siblings: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.9.0.1}{9} }$ R ${\href{/padicField/5.9.0.1}{9} }$ R ${\href{/padicField/11.9.0.1}{9} }$ ${\href{/padicField/13.9.0.1}{9} }$ ${\href{/padicField/17.2.0.1}{2} }^{2}{,}\,{\href{/padicField/17.1.0.1}{1} }^{5}$ R ${\href{/padicField/23.3.0.1}{3} }{,}\,{\href{/padicField/23.2.0.1}{2} }^{2}{,}\,{\href{/padicField/23.1.0.1}{1} }^{2}$ ${\href{/padicField/29.3.0.1}{3} }^{3}$ ${\href{/padicField/31.9.0.1}{9} }$ ${\href{/padicField/37.9.0.1}{9} }$ ${\href{/padicField/41.9.0.1}{9} }$ ${\href{/padicField/43.9.0.1}{9} }$ ${\href{/padicField/47.3.0.1}{3} }^{3}$ ${\href{/padicField/53.3.0.1}{3} }^{3}$ ${\href{/padicField/59.3.0.1}{3} }{,}\,{\href{/padicField/59.2.0.1}{2} }^{2}{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(3\) Copy content Toggle raw display $\Q_{3}$$x + 1$$1$$1$$0$Trivial$[\ ]$
$\Q_{3}$$x + 1$$1$$1$$0$Trivial$[\ ]$
3.2.1.1$x^{2} + 6$$2$$1$$1$$C_2$$[\ ]_{2}$
3.2.1.1$x^{2} + 6$$2$$1$$1$$C_2$$[\ ]_{2}$
3.3.0.1$x^{3} + 2 x + 1$$1$$3$$0$$C_3$$[\ ]^{3}$
\(7\) Copy content Toggle raw display 7.9.6.1$x^{9} + 18 x^{8} + 108 x^{7} + 249 x^{6} + 396 x^{5} + 1944 x^{4} + 2631 x^{3} - 2358 x^{2} - 756 x + 11915$$3$$3$$6$$C_3^2$$[\ ]_{3}^{3}$
\(19\) Copy content Toggle raw display 19.9.8.2$x^{9} + 57$$9$$1$$8$$C_9$$[\ ]_{9}$