Properties

Label 9.5.111964521321.1
Degree $9$
Signature $[5, 2]$
Discriminant $3^{18}\cdot 17^{2}$
Root discriminant $16.89$
Ramified primes $3, 17$
Class number $1$
Class group Trivial
Galois group $((C_3 \times (C_3^2 : C_2)) : C_2) : C_3$ (as 9T25)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, -9, -18, -12, -9, -9, 0, 0, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^9 - 9*x^5 - 9*x^4 - 12*x^3 - 18*x^2 - 9*x - 1)
 
gp: K = bnfinit(x^9 - 9*x^5 - 9*x^4 - 12*x^3 - 18*x^2 - 9*x - 1, 1)
 

Normalized defining polynomial

\( x^{9} - 9 x^{5} - 9 x^{4} - 12 x^{3} - 18 x^{2} - 9 x - 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $9$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[5, 2]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(111964521321=3^{18}\cdot 17^{2}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $16.89$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 17$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{17} a^{8} + \frac{6}{17} a^{7} + \frac{2}{17} a^{6} - \frac{5}{17} a^{5} - \frac{5}{17} a^{4} - \frac{5}{17} a^{3} - \frac{8}{17} a^{2} + \frac{2}{17} a + \frac{3}{17}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $6$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 181.727846132 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_3^3:C_2^2:C_3$ (as 9T25):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 324
The 13 conjugacy class representatives for $((C_3 \times (C_3^2 : C_2)) : C_2) : C_3$
Character table for $((C_3 \times (C_3^2 : C_2)) : C_2) : C_3$

Intermediate fields

\(\Q(\zeta_{9})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 12 siblings: data not computed
Degree 18 siblings: data not computed
Degree 27 siblings: data not computed
Degree 36 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.9.0.1}{9} }$ R ${\href{/LocalNumberField/5.9.0.1}{9} }$ ${\href{/LocalNumberField/7.9.0.1}{9} }$ ${\href{/LocalNumberField/11.3.0.1}{3} }^{3}$ ${\href{/LocalNumberField/13.3.0.1}{3} }^{3}$ R ${\href{/LocalNumberField/19.3.0.1}{3} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/23.9.0.1}{9} }$ ${\href{/LocalNumberField/29.3.0.1}{3} }^{3}$ ${\href{/LocalNumberField/31.9.0.1}{9} }$ ${\href{/LocalNumberField/37.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{3}$ ${\href{/LocalNumberField/41.9.0.1}{9} }$ ${\href{/LocalNumberField/43.3.0.1}{3} }^{3}$ ${\href{/LocalNumberField/47.9.0.1}{9} }$ ${\href{/LocalNumberField/53.3.0.1}{3} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/59.3.0.1}{3} }^{3}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$3$3.9.18.13$x^{9} + 6 x^{6} + 9 x + 3$$9$$1$$18$$C_3 \wr C_3 $$[2, 2, 7/3]^{3}$
$17$$\Q_{17}$$x + 3$$1$$1$$0$Trivial$[\ ]$
$\Q_{17}$$x + 3$$1$$1$$0$Trivial$[\ ]$
$\Q_{17}$$x + 3$$1$$1$$0$Trivial$[\ ]$
17.2.1.2$x^{2} + 51$$2$$1$$1$$C_2$$[\ ]_{2}$
17.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
17.2.1.1$x^{2} - 17$$2$$1$$1$$C_2$$[\ ]_{2}$

Artin representations

Label Dimension Conductor Defining polynomial of Artin field $G$ Ind $\chi(c)$
* 1.1.1t1.1c1$1$ $1$ $x$ $C_1$ $1$ $1$
* 1.3e2.3t1.1c1$1$ $ 3^{2}$ $x^{3} - 3 x - 1$ $C_3$ (as 3T1) $0$ $1$
* 1.3e2.3t1.1c2$1$ $ 3^{2}$ $x^{3} - 3 x - 1$ $C_3$ (as 3T1) $0$ $1$
3.3e4_17e2.4t4.1c1$3$ $ 3^{4} \cdot 17^{2}$ $x^{4} - x^{3} + 6 x^{2} - 5 x + 8$ $A_4$ (as 4T4) $1$ $-1$
4.3e9_17e2.12t132.1c1$4$ $ 3^{9} \cdot 17^{2}$ $x^{9} - 9 x^{5} - 9 x^{4} - 12 x^{3} - 18 x^{2} - 9 x - 1$ $((C_3 \times (C_3^2 : C_2)) : C_2) : C_3$ (as 9T25) $0$ $0$
4.3e9_17e2.12t132.1c2$4$ $ 3^{9} \cdot 17^{2}$ $x^{9} - 9 x^{5} - 9 x^{4} - 12 x^{3} - 18 x^{2} - 9 x - 1$ $((C_3 \times (C_3^2 : C_2)) : C_2) : C_3$ (as 9T25) $0$ $0$
4.3e9_17e2.12t132.2c1$4$ $ 3^{9} \cdot 17^{2}$ $x^{9} - 9 x^{5} - 9 x^{4} - 12 x^{3} - 18 x^{2} - 9 x - 1$ $((C_3 \times (C_3^2 : C_2)) : C_2) : C_3$ (as 9T25) $0$ $0$
4.3e7_17e2.12t133.1c1$4$ $ 3^{7} \cdot 17^{2}$ $x^{9} - 9 x^{5} - 9 x^{4} - 12 x^{3} - 18 x^{2} - 9 x - 1$ $((C_3 \times (C_3^2 : C_2)) : C_2) : C_3$ (as 9T25) $0$ $0$
4.3e7_17e2.12t133.1c2$4$ $ 3^{7} \cdot 17^{2}$ $x^{9} - 9 x^{5} - 9 x^{4} - 12 x^{3} - 18 x^{2} - 9 x - 1$ $((C_3 \times (C_3^2 : C_2)) : C_2) : C_3$ (as 9T25) $0$ $0$
4.3e9_17e2.12t132.2c2$4$ $ 3^{9} \cdot 17^{2}$ $x^{9} - 9 x^{5} - 9 x^{4} - 12 x^{3} - 18 x^{2} - 9 x - 1$ $((C_3 \times (C_3^2 : C_2)) : C_2) : C_3$ (as 9T25) $0$ $0$
* 6.3e14_17e2.9t25.1c1$6$ $ 3^{14} \cdot 17^{2}$ $x^{9} - 9 x^{5} - 9 x^{4} - 12 x^{3} - 18 x^{2} - 9 x - 1$ $((C_3 \times (C_3^2 : C_2)) : C_2) : C_3$ (as 9T25) $1$ $2$
6.3e14_17e4.18t141.1c1$6$ $ 3^{14} \cdot 17^{4}$ $x^{9} - 9 x^{5} - 9 x^{4} - 12 x^{3} - 18 x^{2} - 9 x - 1$ $((C_3 \times (C_3^2 : C_2)) : C_2) : C_3$ (as 9T25) $1$ $-2$
12.3e26_17e6.18t142.1c1$12$ $ 3^{26} \cdot 17^{6}$ $x^{9} - 9 x^{5} - 9 x^{4} - 12 x^{3} - 18 x^{2} - 9 x - 1$ $((C_3 \times (C_3^2 : C_2)) : C_2) : C_3$ (as 9T25) $1$ $0$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.