Properties

Label 9.3.969508459.1
Degree $9$
Signature $[3, 3]$
Discriminant $-\,19^{2}\cdot 139^{3}$
Root discriminant $9.97$
Ramified primes $19, 139$
Class number $1$
Class group Trivial
Galois group $C_3 \wr S_3 $ (as 9T20)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 6, 12, 11, 4, -4, -6, -2, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^9 - 2*x^7 - 6*x^6 - 4*x^5 + 4*x^4 + 11*x^3 + 12*x^2 + 6*x + 1)
 
gp: K = bnfinit(x^9 - 2*x^7 - 6*x^6 - 4*x^5 + 4*x^4 + 11*x^3 + 12*x^2 + 6*x + 1, 1)
 

Normalized defining polynomial

\( x^{9} - 2 x^{7} - 6 x^{6} - 4 x^{5} + 4 x^{4} + 11 x^{3} + 12 x^{2} + 6 x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $9$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[3, 3]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-969508459=-\,19^{2}\cdot 139^{3}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $9.97$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $19, 139$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $5$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  \( a^{8} - a^{7} - a^{6} - 5 a^{5} + a^{4} + 4 a^{3} + 7 a^{2} + 4 a - 1 \),  \( a^{8} - 2 a^{6} - 6 a^{5} - 4 a^{4} + 4 a^{3} + 11 a^{2} + 12 a + 5 \),  \( 2 a^{8} - 2 a^{7} - 3 a^{6} - 8 a^{5} + 2 a^{4} + 9 a^{3} + 11 a^{2} + 8 a + 1 \),  \( 4 a^{8} - 2 a^{7} - 7 a^{6} - 21 a^{5} - 5 a^{4} + 19 a^{3} + 36 a^{2} + 30 a + 8 \),  \( a^{7} - a^{6} - a^{5} - 5 a^{4} + a^{3} + 4 a^{2} + 7 a + 4 \)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 7.22483093173 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_3\wr S_3$ (as 9T20):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 162
The 22 conjugacy class representatives for $C_3 \wr S_3 $
Character table for $C_3 \wr S_3 $ is not computed

Intermediate fields

3.1.139.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 9 siblings: data not computed
Degree 18 siblings: data not computed
Degree 27 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.6.0.1}{6} }{,}\,{\href{/LocalNumberField/2.3.0.1}{3} }$ ${\href{/LocalNumberField/3.6.0.1}{6} }{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }$ ${\href{/LocalNumberField/5.9.0.1}{9} }$ ${\href{/LocalNumberField/7.3.0.1}{3} }^{3}$ ${\href{/LocalNumberField/11.3.0.1}{3} }^{3}$ ${\href{/LocalNumberField/13.9.0.1}{9} }$ ${\href{/LocalNumberField/17.3.0.1}{3} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}$ R ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{3}$ ${\href{/LocalNumberField/29.9.0.1}{9} }$ ${\href{/LocalNumberField/31.3.0.1}{3} }^{3}$ ${\href{/LocalNumberField/37.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{3}$ ${\href{/LocalNumberField/41.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{3}$ ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{3}$ ${\href{/LocalNumberField/47.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{3}$ ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }$ ${\href{/LocalNumberField/59.3.0.1}{3} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$19$19.3.2.1$x^{3} + 76$$3$$1$$2$$C_3$$[\ ]_{3}$
19.6.0.1$x^{6} - x + 3$$1$$6$$0$$C_6$$[\ ]^{6}$
$139$139.3.0.1$x^{3} - x + 5$$1$$3$$0$$C_3$$[\ ]^{3}$
139.6.3.2$x^{6} - 19321 x^{2} + 13428095$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$

Artin representations

Label Dimension Conductor Defining polynomial of Artin field $G$ Ind $\chi(c)$
* 1.1.1t1.1c1$1$ $1$ $x$ $C_1$ $1$ $1$
1.139.2t1.1c1$1$ $ 139 $ $x^{2} - x + 35$ $C_2$ (as 2T1) $1$ $-1$
1.19_139.6t1.2c1$1$ $ 19 \cdot 139 $ $x^{6} - x^{5} + 92 x^{4} - 71 x^{3} + 3683 x^{2} - 134 x + 58597$ $C_6$ (as 6T1) $0$ $-1$
1.19.3t1.1c1$1$ $ 19 $ $x^{3} - x^{2} - 6 x + 7$ $C_3$ (as 3T1) $0$ $1$
1.19_139.6t1.2c2$1$ $ 19 \cdot 139 $ $x^{6} - x^{5} + 92 x^{4} - 71 x^{3} + 3683 x^{2} - 134 x + 58597$ $C_6$ (as 6T1) $0$ $-1$
1.19.3t1.1c2$1$ $ 19 $ $x^{3} - x^{2} - 6 x + 7$ $C_3$ (as 3T1) $0$ $1$
* 2.139.3t2.1c1$2$ $ 139 $ $x^{3} - x^{2} + x + 2$ $S_3$ (as 3T2) $1$ $0$
2.19e2_139.6t5.1c1$2$ $ 19^{2} \cdot 139 $ $x^{6} - x^{5} + 31 x^{4} + 318 x^{3} + 680 x^{2} - 3551 x + 5365$ $S_3\times C_3$ (as 6T5) $0$ $0$
2.19e2_139.6t5.1c2$2$ $ 19^{2} \cdot 139 $ $x^{6} - x^{5} + 31 x^{4} + 318 x^{3} + 680 x^{2} - 3551 x + 5365$ $S_3\times C_3$ (as 6T5) $0$ $0$
3.19e3_139e2.18t86.1c1$3$ $ 19^{3} \cdot 139^{2}$ $x^{9} - 2 x^{7} - 6 x^{6} - 4 x^{5} + 4 x^{4} + 11 x^{3} + 12 x^{2} + 6 x + 1$ $C_3 \wr S_3 $ (as 9T20) $0$ $-1$
3.19e2_139e2.18t86.1c1$3$ $ 19^{2} \cdot 139^{2}$ $x^{9} - 2 x^{7} - 6 x^{6} - 4 x^{5} + 4 x^{4} + 11 x^{3} + 12 x^{2} + 6 x + 1$ $C_3 \wr S_3 $ (as 9T20) $0$ $-1$
3.19e2_139.9t20.1c1$3$ $ 19^{2} \cdot 139 $ $x^{9} - 2 x^{7} - 6 x^{6} - 4 x^{5} + 4 x^{4} + 11 x^{3} + 12 x^{2} + 6 x + 1$ $C_3 \wr S_3 $ (as 9T20) $0$ $1$
3.19e3_139.9t20.1c1$3$ $ 19^{3} \cdot 139 $ $x^{9} - 2 x^{7} - 6 x^{6} - 4 x^{5} + 4 x^{4} + 11 x^{3} + 12 x^{2} + 6 x + 1$ $C_3 \wr S_3 $ (as 9T20) $0$ $1$
3.19e2_139.9t20.1c2$3$ $ 19^{2} \cdot 139 $ $x^{9} - 2 x^{7} - 6 x^{6} - 4 x^{5} + 4 x^{4} + 11 x^{3} + 12 x^{2} + 6 x + 1$ $C_3 \wr S_3 $ (as 9T20) $0$ $1$
* 3.19_139.9t20.1c1$3$ $ 19 \cdot 139 $ $x^{9} - 2 x^{7} - 6 x^{6} - 4 x^{5} + 4 x^{4} + 11 x^{3} + 12 x^{2} + 6 x + 1$ $C_3 \wr S_3 $ (as 9T20) $0$ $1$
3.19_139e2.18t86.1c1$3$ $ 19 \cdot 139^{2}$ $x^{9} - 2 x^{7} - 6 x^{6} - 4 x^{5} + 4 x^{4} + 11 x^{3} + 12 x^{2} + 6 x + 1$ $C_3 \wr S_3 $ (as 9T20) $0$ $-1$
3.19_139e2.18t86.1c2$3$ $ 19 \cdot 139^{2}$ $x^{9} - 2 x^{7} - 6 x^{6} - 4 x^{5} + 4 x^{4} + 11 x^{3} + 12 x^{2} + 6 x + 1$ $C_3 \wr S_3 $ (as 9T20) $0$ $-1$
3.19e3_139e2.18t86.1c2$3$ $ 19^{3} \cdot 139^{2}$ $x^{9} - 2 x^{7} - 6 x^{6} - 4 x^{5} + 4 x^{4} + 11 x^{3} + 12 x^{2} + 6 x + 1$ $C_3 \wr S_3 $ (as 9T20) $0$ $-1$
3.19e3_139.9t20.1c2$3$ $ 19^{3} \cdot 139 $ $x^{9} - 2 x^{7} - 6 x^{6} - 4 x^{5} + 4 x^{4} + 11 x^{3} + 12 x^{2} + 6 x + 1$ $C_3 \wr S_3 $ (as 9T20) $0$ $1$
* 3.19_139.9t20.1c2$3$ $ 19 \cdot 139 $ $x^{9} - 2 x^{7} - 6 x^{6} - 4 x^{5} + 4 x^{4} + 11 x^{3} + 12 x^{2} + 6 x + 1$ $C_3 \wr S_3 $ (as 9T20) $0$ $1$
3.19e2_139e2.18t86.1c2$3$ $ 19^{2} \cdot 139^{2}$ $x^{9} - 2 x^{7} - 6 x^{6} - 4 x^{5} + 4 x^{4} + 11 x^{3} + 12 x^{2} + 6 x + 1$ $C_3 \wr S_3 $ (as 9T20) $0$ $-1$
6.19e4_139e3.9t13.1c1$6$ $ 19^{4} \cdot 139^{3}$ $x^{9} - 2 x^{8} + 10 x^{7} - 19 x^{6} - 16 x^{5} + 79 x^{4} - 96 x^{3} + 67 x^{2} + 50 x + 12$ $C_3^2 : C_6$ (as 9T11) $1$ $0$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.