Normalized defining polynomial
\( x^{9} - 3 x^{8} - 8 x^{7} + 34 x^{6} - 49 x^{5} + 139 x^{4} - 200 x^{3} - 370 x^{2} - 224 x + 1192 \)
Invariants
| Degree: | $9$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[3, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-958468597212736=-\,2^{6}\cdot 157^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $46.20$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 157$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{28} a^{7} + \frac{1}{14} a^{6} - \frac{1}{7} a^{5} + \frac{1}{14} a^{4} + \frac{13}{28} a^{3} - \frac{1}{7} a^{2} + \frac{5}{14} a + \frac{3}{7}$, $\frac{1}{37970464} a^{8} - \frac{158757}{18985232} a^{7} + \frac{1302863}{18985232} a^{6} - \frac{73463}{339022} a^{5} - \frac{1296823}{5424352} a^{4} - \frac{5489383}{18985232} a^{3} + \frac{261853}{18985232} a^{2} - \frac{1219285}{4746308} a - \frac{958721}{4746308}$
Class group and class number
$C_{5}$, which has order $5$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 104509.384672 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3$ (as 9T4):
| A solvable group of order 18 |
| The 9 conjugacy class representatives for $S_3\times C_3$ |
| Character table for $S_3\times C_3$ |
Intermediate fields
| 3.3.24649.1, 3.1.98596.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 6 sibling: | 6.0.1577536.1 |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }$ | ${\href{/LocalNumberField/5.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| $157$ | 157.9.6.1 | $x^{9} + 7065 x^{6} + 16613426 x^{3} + 13060888875$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| 1.2e2.2t1.1c1 | $1$ | $ 2^{2}$ | $x^{2} + 1$ | $C_2$ (as 2T1) | $1$ | $-1$ | |
| * | 1.157.3t1.1c1 | $1$ | $ 157 $ | $x^{3} - x^{2} - 52 x - 64$ | $C_3$ (as 3T1) | $0$ | $1$ |
| 1.2e2_157.6t1.1c1 | $1$ | $ 2^{2} \cdot 157 $ | $x^{6} + 105 x^{4} + 2576 x^{2} + 4096$ | $C_6$ (as 6T1) | $0$ | $-1$ | |
| 1.2e2_157.6t1.1c2 | $1$ | $ 2^{2} \cdot 157 $ | $x^{6} + 105 x^{4} + 2576 x^{2} + 4096$ | $C_6$ (as 6T1) | $0$ | $-1$ | |
| * | 1.157.3t1.1c2 | $1$ | $ 157 $ | $x^{3} - x^{2} - 52 x - 64$ | $C_3$ (as 3T1) | $0$ | $1$ |
| * | 2.2e2_157e2.3t2.1c1 | $2$ | $ 2^{2} \cdot 157^{2}$ | $x^{3} - x^{2} - 52 x + 250$ | $S_3$ (as 3T2) | $1$ | $0$ |
| * | 2.2e2_157.6t5.2c1 | $2$ | $ 2^{2} \cdot 157 $ | $x^{9} - 3 x^{8} - 8 x^{7} + 34 x^{6} - 49 x^{5} + 139 x^{4} - 200 x^{3} - 370 x^{2} - 224 x + 1192$ | $S_3\times C_3$ (as 9T4) | $0$ | $0$ |
| * | 2.2e2_157.6t5.2c2 | $2$ | $ 2^{2} \cdot 157 $ | $x^{9} - 3 x^{8} - 8 x^{7} + 34 x^{6} - 49 x^{5} + 139 x^{4} - 200 x^{3} - 370 x^{2} - 224 x + 1192$ | $S_3\times C_3$ (as 9T4) | $0$ | $0$ |