Properties

Label 9.3.926004075723.1
Degree $9$
Signature $[3, 3]$
Discriminant $-\,3^{9}\cdot 19^{6}$
Root discriminant $21.36$
Ramified primes $3, 19$
Class number $1$
Class group Trivial
Galois group $(C_3^2:C_8):C_2$ (as 9T19)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![35, 153, 210, 138, 42, -3, -15, -9, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^9 - 9*x^7 - 15*x^6 - 3*x^5 + 42*x^4 + 138*x^3 + 210*x^2 + 153*x + 35)
 
gp: K = bnfinit(x^9 - 9*x^7 - 15*x^6 - 3*x^5 + 42*x^4 + 138*x^3 + 210*x^2 + 153*x + 35, 1)
 

Normalized defining polynomial

\( x^{9} - 9 x^{7} - 15 x^{6} - 3 x^{5} + 42 x^{4} + 138 x^{3} + 210 x^{2} + 153 x + 35 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $9$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[3, 3]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-926004075723=-\,3^{9}\cdot 19^{6}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $21.36$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 19$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{128852} a^{8} - \frac{23229}{128852} a^{7} - \frac{11436}{32213} a^{6} - \frac{55083}{128852} a^{5} + \frac{5661}{32213} a^{4} - \frac{11785}{64426} a^{3} + \frac{3880}{32213} a^{2} + \frac{7013}{64426} a + \frac{56907}{128852}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $5$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 541.252773397 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$PSU(3,2):C_2$ (as 9T19):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 144
The 9 conjugacy class representatives for $(C_3^2:C_8):C_2$
Character table for $(C_3^2:C_8):C_2$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.

Sibling fields

Degree 12 sibling: data not computed
Degree 18 siblings: data not computed
Degree 24 siblings: data not computed
Degree 36 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.6.0.1}{6} }{,}\,{\href{/LocalNumberField/2.3.0.1}{3} }$ R ${\href{/LocalNumberField/5.8.0.1}{8} }{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }$ ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ R ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{3}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ ${\href{/LocalNumberField/43.3.0.1}{3} }^{3}$ ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }$ ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$3$3.9.9.12$x^{9} + 6 x + 6$$9$$1$$9$$(C_3^2:C_8):C_2$$[9/8, 9/8]_{8}^{2}$
$19$$\Q_{19}$$x + 4$$1$$1$$0$Trivial$[\ ]$
19.8.6.1$x^{8} + 57 x^{4} + 1444$$4$$2$$6$$Q_8$$[\ ]_{4}^{2}$

Artin representations

Label Dimension Conductor Defining polynomial of Artin field $G$ Ind $\chi(c)$
* 1.1.1t1.1c1$1$ $1$ $x$ $C_1$ $1$ $1$
1.3_19.2t1.1c1$1$ $ 3 \cdot 19 $ $x^{2} - x - 14$ $C_2$ (as 2T1) $1$ $1$
1.19.2t1.1c1$1$ $ 19 $ $x^{2} - x + 5$ $C_2$ (as 2T1) $1$ $-1$
1.3.2t1.1c1$1$ $ 3 $ $x^{2} - x + 1$ $C_2$ (as 2T1) $1$ $-1$
2.3e2_19.4t3.1c1$2$ $ 3^{2} \cdot 19 $ $x^{4} + 3 x^{2} - 12$ $D_{4}$ (as 4T3) $1$ $0$
2.3e2_19e2.8t8.1c1$2$ $ 3^{2} \cdot 19^{2}$ $x^{8} - 2 x^{7} + 4 x^{6} + 10 x^{5} - 26 x^{4} - 8 x^{3} + 169 x^{2} + 136 x - 356$ $QD_{16}$ (as 8T8) $0$ $0$
2.3e2_19e2.8t8.1c2$2$ $ 3^{2} \cdot 19^{2}$ $x^{8} - 2 x^{7} + 4 x^{6} + 10 x^{5} - 26 x^{4} - 8 x^{3} + 169 x^{2} + 136 x - 356$ $QD_{16}$ (as 8T8) $0$ $0$
8.3e9_19e6.18t68.1c1$8$ $ 3^{9} \cdot 19^{6}$ $x^{9} - 9 x^{7} - 15 x^{6} - 3 x^{5} + 42 x^{4} + 138 x^{3} + 210 x^{2} + 153 x + 35$ $(C_3^2:C_8):C_2$ (as 9T19) $1$ $-2$
* 8.3e9_19e6.9t19.1c1$8$ $ 3^{9} \cdot 19^{6}$ $x^{9} - 9 x^{7} - 15 x^{6} - 3 x^{5} + 42 x^{4} + 138 x^{3} + 210 x^{2} + 153 x + 35$ $(C_3^2:C_8):C_2$ (as 9T19) $1$ $2$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.