Normalized defining polynomial
\( x^{9} - 903 x^{7} - 15050 x^{6} - 530964 x^{5} + 1011360 x^{4} + 5278035 x^{3} + 1666695996 x^{2} - 14286781089 x - 223609972474 \)
Invariants
| Degree: | $9$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[3, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-83496688176695495276938419=-\,3^{12}\cdot 7^{6}\cdot 17^{3}\cdot 43^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $758.90$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 17, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{7} a^{3}$, $\frac{1}{14} a^{4} - \frac{1}{2} a$, $\frac{1}{14} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{4214} a^{6} - \frac{1}{14} a^{3}$, $\frac{1}{8428} a^{7} - \frac{1}{14} a^{3} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{23704343703597020903815682992} a^{8} - \frac{135594675465706211560655}{3386334814799574414830811856} a^{7} + \frac{5237640876861980192891}{1693167407399787207415405928} a^{6} - \frac{12932147682759860157081}{2812570444185693035573764} a^{5} + \frac{2844256498999093064835}{200897888870406645398126} a^{4} - \frac{2201381329328596752189}{703142611046423258893441} a^{3} - \frac{4741582124737288650809487}{11250281776742772142295056} a^{2} + \frac{634806229146523980354813}{1607183110963253163185008} a - \frac{946621281211653594677}{27710053637297468330776}$
Class group and class number
$C_{3}\times C_{3}\times C_{6}\times C_{6}\times C_{42}$, which has order $13608$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6365194.594055798 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3$ (as 9T4):
| A solvable group of order 18 |
| The 9 conjugacy class representatives for $S_3\times C_3$ |
| Character table for $S_3\times C_3$ |
Intermediate fields
| 3.3.7338681.1, 3.1.731.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 6 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }^{3}$ | R | ${\href{/LocalNumberField/5.3.0.1}{3} }^{3}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{3}$ | R | ${\href{/LocalNumberField/19.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }$ | ${\href{/LocalNumberField/29.1.0.1}{1} }^{9}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/47.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.9.12.1 | $x^{9} + 18 x^{5} + 18 x^{3} + 27 x^{2} + 216$ | $3$ | $3$ | $12$ | $C_3^2$ | $[2]^{3}$ |
| $7$ | 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| $17$ | $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $43$ | 43.3.2.3 | $x^{3} - 3483$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 43.6.5.6 | $x^{6} + 2539107$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |