Normalized defining polynomial
\( x^{9} - 3 x^{8} + 3 x^{7} - 2 x^{6} + 3 x^{4} + x^{3} - 9 x^{2} + 6 x - 1 \)
Invariants
| Degree: | $9$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[3, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-787320000=-\,2^{6}\cdot 3^{9}\cdot 5^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $9.74$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{47} a^{8} + \frac{5}{47} a^{7} - \frac{4}{47} a^{6} + \frac{13}{47} a^{5} + \frac{10}{47} a^{4} - \frac{11}{47} a^{3} + \frac{7}{47} a^{2} + \frac{6}{47}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6.42704972439 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3^2:S_3$ (as 9T12):
| A solvable group of order 54 |
| The 10 conjugacy class representatives for $(C_3^2:C_3):C_2$ |
| Character table for $(C_3^2:C_3):C_2$ |
Intermediate fields
| 3.1.108.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 9 siblings: | data not computed |
| Degree 18 siblings: | data not computed |
| Degree 27 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.9.6.1 | $x^{9} - 4 x^{3} + 8$ | $3$ | $3$ | $6$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ |
| $3$ | 3.9.9.6 | $x^{9} + 3 x^{7} + 3 x^{6} + 18 x^{4} + 54$ | $3$ | $3$ | $9$ | $S_3\times C_3$ | $[3/2]_{2}^{3}$ |
| $5$ | 5.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 5.6.4.2 | $x^{6} - 5 x^{3} + 50$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ |
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| 1.3.2t1.1c1 | $1$ | $ 3 $ | $x^{2} - x + 1$ | $C_2$ (as 2T1) | $1$ | $-1$ | |
| * | 2.2e2_3e3.3t2.1c1 | $2$ | $ 2^{2} \cdot 3^{3}$ | $x^{3} - 2$ | $S_3$ (as 3T2) | $1$ | $0$ |
| 2.2e2_3e3_5e2.3t2.2c1 | $2$ | $ 2^{2} \cdot 3^{3} \cdot 5^{2}$ | $x^{3} - 20$ | $S_3$ (as 3T2) | $1$ | $0$ | |
| 2.3e3_5e2.3t2.1c1 | $2$ | $ 3^{3} \cdot 5^{2}$ | $x^{3} - 5$ | $S_3$ (as 3T2) | $1$ | $0$ | |
| 2.2e2_3_5e2.3t2.1c1 | $2$ | $ 2^{2} \cdot 3 \cdot 5^{2}$ | $x^{3} - x^{2} - 3 x - 3$ | $S_3$ (as 3T2) | $1$ | $0$ | |
| * | 3.2e2_3e3_5e2.9t12.3c1 | $3$ | $ 2^{2} \cdot 3^{3} \cdot 5^{2}$ | $x^{9} - 3 x^{8} + 3 x^{7} - 2 x^{6} + 3 x^{4} + x^{3} - 9 x^{2} + 6 x - 1$ | $(C_3^2:C_3):C_2$ (as 9T12) | $0$ | $1$ |
| * | 3.2e2_3e3_5e2.9t12.3c2 | $3$ | $ 2^{2} \cdot 3^{3} \cdot 5^{2}$ | $x^{9} - 3 x^{8} + 3 x^{7} - 2 x^{6} + 3 x^{4} + x^{3} - 9 x^{2} + 6 x - 1$ | $(C_3^2:C_3):C_2$ (as 9T12) | $0$ | $1$ |
| 3.2e2_3e4_5e2.18t24.3c1 | $3$ | $ 2^{2} \cdot 3^{4} \cdot 5^{2}$ | $x^{9} - 3 x^{8} + 3 x^{7} - 2 x^{6} + 3 x^{4} + x^{3} - 9 x^{2} + 6 x - 1$ | $(C_3^2:C_3):C_2$ (as 9T12) | $0$ | $-1$ | |
| 3.2e2_3e4_5e2.18t24.3c2 | $3$ | $ 2^{2} \cdot 3^{4} \cdot 5^{2}$ | $x^{9} - 3 x^{8} + 3 x^{7} - 2 x^{6} + 3 x^{4} + x^{3} - 9 x^{2} + 6 x - 1$ | $(C_3^2:C_3):C_2$ (as 9T12) | $0$ | $-1$ |