Normalized defining polynomial
\( x^{9} - 3x^{8} - 21x^{7} + 72x^{6} + 60x^{5} - 219x^{4} - 213x^{3} + 309x^{2} - 120x + 3 \)
Invariants
Degree: | $9$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[3, 3]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: |
\(-749306075343552\)
\(\medspace = -\,2^{6}\cdot 3^{9}\cdot 29^{6}\)
| sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(44.95\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Ramified primes: |
\(2\), \(3\), \(29\)
| sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{-3}) \) | ||
$\card{ \Aut(K/\Q) }$: | $1$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{5}a^{5}+\frac{1}{5}a^{4}-\frac{2}{5}a^{3}-\frac{2}{5}a^{2}+\frac{2}{5}a+\frac{2}{5}$, $\frac{1}{5}a^{6}+\frac{2}{5}a^{4}-\frac{1}{5}a^{2}-\frac{2}{5}$, $\frac{1}{125}a^{7}-\frac{4}{125}a^{6}-\frac{11}{125}a^{5}+\frac{34}{125}a^{4}-\frac{3}{25}a^{3}-\frac{1}{5}a^{2}+\frac{47}{125}a-\frac{38}{125}$, $\frac{1}{3125}a^{8}+\frac{9}{3125}a^{7}+\frac{87}{3125}a^{6}-\frac{134}{3125}a^{5}-\frac{298}{3125}a^{4}+\frac{241}{625}a^{3}-\frac{753}{3125}a^{2}-\frac{602}{3125}a+\frac{1406}{3125}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $5$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: |
\( -1 \)
(order $2$)
| sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: |
$\frac{222}{3125}a^{8}-\frac{602}{3125}a^{7}-\frac{4661}{3125}a^{6}+\frac{14477}{3125}a^{5}+\frac{14194}{3125}a^{4}-\frac{8073}{625}a^{3}-\frac{52166}{3125}a^{2}+\frac{66031}{3125}a-\frac{23443}{3125}$, $\frac{68}{3125}a^{8}-\frac{213}{3125}a^{7}-\frac{1409}{3125}a^{6}+\frac{4963}{3125}a^{5}+\frac{4186}{3125}a^{4}-\frac{3137}{625}a^{3}-\frac{14329}{3125}a^{2}+\frac{20914}{3125}a-\frac{7417}{3125}$, $\frac{154}{3125}a^{8}+\frac{236}{3125}a^{7}-\frac{2627}{3125}a^{6}-\frac{1736}{3125}a^{5}+\frac{8133}{3125}a^{4}+\frac{1814}{625}a^{3}-\frac{7212}{3125}a^{2}+\frac{117}{3125}a+\frac{1474}{3125}$, $\frac{218}{3125}a^{8}-\frac{763}{3125}a^{7}-\frac{3884}{3125}a^{6}+\frac{18263}{3125}a^{5}-\frac{4489}{3125}a^{4}-\frac{10037}{625}a^{3}+\frac{43346}{3125}a^{2}-\frac{11811}{3125}a+\frac{58}{3125}$, $\frac{9}{3125}a^{8}+\frac{31}{3125}a^{7}-\frac{892}{3125}a^{6}+\frac{1219}{3125}a^{5}+\frac{12493}{3125}a^{4}-\frac{7181}{625}a^{3}+\frac{20723}{3125}a^{2}-\frac{7143}{3125}a+\frac{179}{3125}$
| sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 25480.4089627 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{3}\cdot(2\pi)^{3}\cdot 25480.4089627 \cdot 1}{2\cdot\sqrt{749306075343552}}\cr\approx \mathstrut & 0.923583921282 \end{aligned}\]
Galois group
$C_3^2:\GL(2,3)$ (as 9T26):
A solvable group of order 432 |
The 11 conjugacy class representatives for $((C_3^2:Q_8):C_3):C_2$ |
Character table for $((C_3^2:Q_8):C_3):C_2$ |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
Degree 12 sibling: | data not computed |
Degree 18 sibling: | data not computed |
Degree 24 siblings: | data not computed |
Degree 27 sibling: | data not computed |
Degree 36 siblings: | data not computed |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | ${\href{/padicField/5.2.0.1}{2} }^{3}{,}\,{\href{/padicField/5.1.0.1}{1} }^{3}$ | ${\href{/padicField/7.6.0.1}{6} }{,}\,{\href{/padicField/7.2.0.1}{2} }{,}\,{\href{/padicField/7.1.0.1}{1} }$ | ${\href{/padicField/11.8.0.1}{8} }{,}\,{\href{/padicField/11.1.0.1}{1} }$ | ${\href{/padicField/13.4.0.1}{4} }^{2}{,}\,{\href{/padicField/13.1.0.1}{1} }$ | ${\href{/padicField/17.8.0.1}{8} }{,}\,{\href{/padicField/17.1.0.1}{1} }$ | ${\href{/padicField/19.6.0.1}{6} }{,}\,{\href{/padicField/19.2.0.1}{2} }{,}\,{\href{/padicField/19.1.0.1}{1} }$ | ${\href{/padicField/23.6.0.1}{6} }{,}\,{\href{/padicField/23.3.0.1}{3} }$ | R | ${\href{/padicField/31.4.0.1}{4} }^{2}{,}\,{\href{/padicField/31.1.0.1}{1} }$ | ${\href{/padicField/37.6.0.1}{6} }{,}\,{\href{/padicField/37.2.0.1}{2} }{,}\,{\href{/padicField/37.1.0.1}{1} }$ | ${\href{/padicField/41.8.0.1}{8} }{,}\,{\href{/padicField/41.1.0.1}{1} }$ | ${\href{/padicField/43.6.0.1}{6} }{,}\,{\href{/padicField/43.2.0.1}{2} }{,}\,{\href{/padicField/43.1.0.1}{1} }$ | ${\href{/padicField/47.8.0.1}{8} }{,}\,{\href{/padicField/47.1.0.1}{1} }$ | ${\href{/padicField/53.8.0.1}{8} }{,}\,{\href{/padicField/53.1.0.1}{1} }$ | ${\href{/padicField/59.8.0.1}{8} }{,}\,{\href{/padicField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.9.6.1 | $x^{9} + 3 x^{7} + 9 x^{6} + 3 x^{5} - 26 x^{3} + 9 x^{2} - 27 x + 29$ | $3$ | $3$ | $6$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ |
\(3\)
| 3.9.9.12 | $x^{9} + 6 x + 3$ | $9$ | $1$ | $9$ | $(C_3^2:C_8):C_2$ | $[9/8, 9/8]_{8}^{2}$ |
\(29\)
| 29.9.6.1 | $x^{9} + 6 x^{7} + 168 x^{6} + 12 x^{5} + 150 x^{4} - 11725 x^{3} + 672 x^{2} - 10416 x + 175848$ | $3$ | $3$ | $6$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ |
Artin representations
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
---|---|---|---|---|---|---|---|
* | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
1.3.2t1.a.a | $1$ | $ 3 $ | \(\Q(\sqrt{-3}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
2.10092.3t2.a.a | $2$ | $ 2^{2} \cdot 3 \cdot 29^{2}$ | 3.1.10092.1 | $S_3$ (as 3T2) | $1$ | $0$ | |
2.30276.24t22.a.a | $2$ | $ 2^{2} \cdot 3^{2} \cdot 29^{2}$ | 8.2.24749176752.1 | $\textrm{GL(2,3)}$ (as 8T23) | $0$ | $0$ | |
2.30276.24t22.a.b | $2$ | $ 2^{2} \cdot 3^{2} \cdot 29^{2}$ | 8.2.24749176752.1 | $\textrm{GL(2,3)}$ (as 8T23) | $0$ | $0$ | |
3.90828.4t5.a.a | $3$ | $ 2^{2} \cdot 3^{3} \cdot 29^{2}$ | 4.2.90828.2 | $S_4$ (as 4T5) | $1$ | $1$ | |
3.30276.6t8.a.a | $3$ | $ 2^{2} \cdot 3^{2} \cdot 29^{2}$ | 4.2.90828.2 | $S_4$ (as 4T5) | $1$ | $-1$ | |
4.272484.8t23.b.a | $4$ | $ 2^{2} \cdot 3^{4} \cdot 29^{2}$ | 8.2.24749176752.1 | $\textrm{GL(2,3)}$ (as 8T23) | $1$ | $0$ | |
* | 8.749...552.9t26.b.a | $8$ | $ 2^{6} \cdot 3^{9} \cdot 29^{6}$ | 9.3.749306075343552.2 | $((C_3^2:Q_8):C_3):C_2$ (as 9T26) | $1$ | $2$ |
8.749...552.18t157.b.a | $8$ | $ 2^{6} \cdot 3^{9} \cdot 29^{6}$ | 9.3.749306075343552.2 | $((C_3^2:Q_8):C_3):C_2$ (as 9T26) | $1$ | $-2$ | |
16.166...936.24t1334.b.a | $16$ | $ 2^{10} \cdot 3^{18} \cdot 29^{10}$ | 9.3.749306075343552.2 | $((C_3^2:Q_8):C_3):C_2$ (as 9T26) | $1$ | $0$ |