Normalized defining polynomial
\( x^{9} - 287 x^{7} - 445 x^{6} + 25039 x^{5} + 96194 x^{4} - 488422 x^{3} - 2638405 x^{2} - 3176523 x - 10543679 \)
Invariants
| Degree: | $9$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[3, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-74211952229135601401024=-\,2^{6}\cdot 7^{6}\cdot 37^{7}\cdot 47^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $347.67$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 37, 47$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{370} a^{6} - \frac{46}{185} a^{5} + \frac{4}{37} a^{4} + \frac{78}{185} a^{3} + \frac{43}{370} a^{2} + \frac{38}{185} a - \frac{103}{370}$, $\frac{1}{1110} a^{7} - \frac{1}{1110} a^{6} + \frac{89}{555} a^{5} - \frac{137}{555} a^{4} - \frac{191}{1110} a^{3} - \frac{451}{1110} a^{2} - \frac{217}{1110} a + \frac{247}{1110}$, $\frac{1}{196372057769827110} a^{8} - \frac{31421433862907}{196372057769827110} a^{7} + \frac{5559497990993}{5307352912698030} a^{6} - \frac{30790121402378818}{98186028884913555} a^{5} + \frac{90600447877259903}{196372057769827110} a^{4} + \frac{304387858057537}{196372057769827110} a^{3} - \frac{394130872425073}{2181911752998079} a^{2} + \frac{49123007804883581}{196372057769827110} a - \frac{824507726211217}{1801578511649790}$
Class group and class number
$C_{3}\times C_{3}\times C_{3}\times C_{111}$, which has order $2997$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 42274.62992272048 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3$ (as 9T4):
| A solvable group of order 18 |
| The 9 conjugacy class representatives for $S_3\times C_3$ |
| Character table for $S_3\times C_3$ |
Intermediate fields
| 3.3.67081.2, 3.1.6956.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 6 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/5.3.0.1}{3} }^{3}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{3}$ | R | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ | ${\href{/LocalNumberField/43.1.0.1}{1} }^{9}$ | R | ${\href{/LocalNumberField/53.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.9.6.1 | $x^{9} - 4 x^{3} + 8$ | $3$ | $3$ | $6$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ |
| $7$ | 7.3.2.3 | $x^{3} - 28$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 7.3.2.3 | $x^{3} - 28$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.3 | $x^{3} - 28$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| $37$ | 37.3.2.2 | $x^{3} + 74$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 37.6.5.3 | $x^{6} - 592$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| $47$ | 47.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 47.6.3.2 | $x^{6} - 2209 x^{2} + 207646$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |