Properties

Label 9.3.496106447713...0256.1
Degree $9$
Signature $[3, 3]$
Discriminant $-\,2^{6}\cdot 3^{9}\cdot 7^{6}\cdot 23^{3}\cdot 31^{7}$
Root discriminant $716.25$
Ramified primes $2, 3, 7, 23, 31$
Class number $30132$ (GRH)
Class group $[3, 18, 558]$ (GRH)
Galois group $S_3\times C_3$ (as 9T4)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![9262581, -1109280, 441321, 224527, -118125, 21450, 926, -285, -3, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^9 - 3*x^8 - 285*x^7 + 926*x^6 + 21450*x^5 - 118125*x^4 + 224527*x^3 + 441321*x^2 - 1109280*x + 9262581)
 
gp: K = bnfinit(x^9 - 3*x^8 - 285*x^7 + 926*x^6 + 21450*x^5 - 118125*x^4 + 224527*x^3 + 441321*x^2 - 1109280*x + 9262581, 1)
 

Normalized defining polynomial

\( x^{9} - 3 x^{8} - 285 x^{7} + 926 x^{6} + 21450 x^{5} - 118125 x^{4} + 224527 x^{3} + 441321 x^{2} - 1109280 x + 9262581 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $9$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[3, 3]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-49610644771367831365400256=-\,2^{6}\cdot 3^{9}\cdot 7^{6}\cdot 23^{3}\cdot 31^{7}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $716.25$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 7, 23, 31$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{558} a^{6} - \frac{44}{93} a^{5} + \frac{7}{62} a^{4} + \frac{80}{279} a^{3} - \frac{11}{93} a^{2} + \frac{40}{93} a - \frac{73}{186}$, $\frac{1}{558} a^{7} + \frac{13}{62} a^{5} + \frac{26}{279} a^{4} - \frac{13}{31} a^{3} + \frac{19}{93} a^{2} + \frac{29}{186} a + \frac{12}{31}$, $\frac{1}{122771061446697882} a^{8} + \frac{65179798245}{220019823381179} a^{7} - \frac{46860990317071}{61385530723348941} a^{6} - \frac{16215451019592451}{61385530723348941} a^{5} + \frac{4277999952101277}{13641229049633098} a^{4} + \frac{6235378468987202}{61385530723348941} a^{3} + \frac{8023159486756753}{40923687148899294} a^{2} - \frac{877837696991060}{20461843574449647} a - \frac{6275530474299511}{40923687148899294}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{3}\times C_{18}\times C_{558}$, which has order $30132$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $5$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 244134.05098658882 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_3\times S_3$ (as 9T4):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 18
The 9 conjugacy class representatives for $S_3\times C_3$
Character table for $S_3\times C_3$

Intermediate fields

3.3.47089.2, 3.1.77004.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Galois closure: data not computed
Degree 6 sibling: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R ${\href{/LocalNumberField/5.3.0.1}{3} }^{3}$ R ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }$ ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }$ ${\href{/LocalNumberField/17.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{3}$ ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }$ R ${\href{/LocalNumberField/29.1.0.1}{1} }^{9}$ R ${\href{/LocalNumberField/37.3.0.1}{3} }^{3}$ ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ ${\href{/LocalNumberField/43.3.0.1}{3} }^{3}$ ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{3}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.9.6.1$x^{9} - 4 x^{3} + 8$$3$$3$$6$$S_3\times C_3$$[\ ]_{3}^{6}$
$3$3.3.3.1$x^{3} + 6 x + 3$$3$$1$$3$$S_3$$[3/2]_{2}$
3.3.3.1$x^{3} + 6 x + 3$$3$$1$$3$$S_3$$[3/2]_{2}$
3.3.3.1$x^{3} + 6 x + 3$$3$$1$$3$$S_3$$[3/2]_{2}$
$7$7.3.2.1$x^{3} + 14$$3$$1$$2$$C_3$$[\ ]_{3}$
7.6.4.2$x^{6} - 7 x^{3} + 147$$3$$2$$4$$C_6$$[\ ]_{3}^{2}$
$23$23.3.0.1$x^{3} - x + 4$$1$$3$$0$$C_3$$[\ ]^{3}$
23.6.3.2$x^{6} - 529 x^{2} + 48668$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
$31$31.3.2.3$x^{3} - 1519$$3$$1$$2$$C_3$$[\ ]_{3}$
31.6.5.6$x^{6} + 521017$$6$$1$$5$$C_6$$[\ ]_{6}$