Properties

Label 9.3.4760622968832.3
Degree $9$
Signature $[3, 3]$
Discriminant $-4.761\times 10^{12}$
Root discriminant \(25.62\)
Ramified primes $2,3$
Class number $3$
Class group [3]
Galois group $((C_3^2:Q_8):C_3):C_2$ (as 9T26)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^9 - 18*x^5 - 12*x^3 + 9*x - 8)
 
gp: K = bnfinit(y^9 - 18*y^5 - 12*y^3 + 9*y - 8, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^9 - 18*x^5 - 12*x^3 + 9*x - 8);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^9 - 18*x^5 - 12*x^3 + 9*x - 8)
 

\( x^{9} - 18x^{5} - 12x^{3} + 9x - 8 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $9$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[3, 3]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(-4760622968832\) \(\medspace = -\,2^{12}\cdot 3^{19}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(25.62\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{19/12}3^{13/6}\approx 32.3887020988129$
Ramified primes:   \(2\), \(3\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{-3}) \)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{2}a^{5}-\frac{1}{2}a$, $\frac{1}{4}a^{6}-\frac{1}{4}a^{5}-\frac{1}{2}a^{4}-\frac{1}{4}a^{2}-\frac{1}{4}a$, $\frac{1}{4}a^{7}-\frac{1}{4}a^{5}-\frac{1}{2}a^{4}-\frac{1}{4}a^{3}-\frac{1}{2}a^{2}+\frac{1}{4}a$, $\frac{1}{292}a^{8}-\frac{17}{146}a^{7}-\frac{3}{73}a^{6}+\frac{43}{292}a^{5}+\frac{53}{292}a^{4}+\frac{24}{73}a^{3}-\frac{16}{73}a^{2}-\frac{87}{292}a+\frac{30}{73}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

$C_{3}$, which has order $3$

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $5$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{5}{73}a^{8}-\frac{23}{292}a^{7}-\frac{21}{292}a^{6}-\frac{4}{73}a^{5}-\frac{100}{73}a^{4}+\frac{387}{292}a^{3}+\frac{107}{292}a^{2}+\frac{225}{146}a+\frac{235}{73}$, $\frac{9}{292}a^{8}+\frac{59}{292}a^{7}-\frac{35}{292}a^{6}-\frac{51}{292}a^{5}-\frac{107}{292}a^{4}-\frac{961}{292}a^{3}+\frac{373}{292}a^{2}+\frac{385}{292}a-\frac{95}{73}$, $\frac{15}{73}a^{8}-\frac{69}{292}a^{7}+\frac{5}{146}a^{6}+\frac{25}{292}a^{5}-\frac{527}{146}a^{4}+\frac{1161}{292}a^{3}-\frac{230}{73}a^{2}+\frac{547}{292}a-\frac{25}{73}$, $\frac{13}{292}a^{8}-\frac{1}{73}a^{7}-\frac{5}{146}a^{6}-\frac{25}{292}a^{5}-\frac{187}{292}a^{4}+\frac{113}{146}a^{3}-\frac{51}{146}a^{2}-\frac{255}{292}a+\frac{25}{73}$, $\frac{187}{292}a^{8}+\frac{139}{292}a^{7}+\frac{23}{73}a^{6}+\frac{21}{73}a^{5}-\frac{3375}{292}a^{4}-\frac{2561}{292}a^{3}-\frac{1969}{146}a^{2}-\frac{764}{73}a+\frac{135}{73}$ Copy content Toggle raw display
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 1319.99130745 \)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{3}\cdot(2\pi)^{3}\cdot 1319.99130745 \cdot 3}{2\cdot\sqrt{4760622968832}}\cr\approx \mathstrut & 1.80077738748 \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^9 - 18*x^5 - 12*x^3 + 9*x - 8)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^9 - 18*x^5 - 12*x^3 + 9*x - 8, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^9 - 18*x^5 - 12*x^3 + 9*x - 8);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^9 - 18*x^5 - 12*x^3 + 9*x - 8);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_3^2:\GL(2,3)$ (as 9T26):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 432
The 11 conjugacy class representatives for $((C_3^2:Q_8):C_3):C_2$
Character table for $((C_3^2:Q_8):C_3):C_2$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.
sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 12 sibling: data not computed
Degree 18 sibling: data not computed
Degree 24 siblings: data not computed
Degree 27 sibling: data not computed
Degree 36 siblings: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R R ${\href{/padicField/5.8.0.1}{8} }{,}\,{\href{/padicField/5.1.0.1}{1} }$ ${\href{/padicField/7.4.0.1}{4} }^{2}{,}\,{\href{/padicField/7.1.0.1}{1} }$ ${\href{/padicField/11.8.0.1}{8} }{,}\,{\href{/padicField/11.1.0.1}{1} }$ ${\href{/padicField/13.6.0.1}{6} }{,}\,{\href{/padicField/13.2.0.1}{2} }{,}\,{\href{/padicField/13.1.0.1}{1} }$ ${\href{/padicField/17.8.0.1}{8} }{,}\,{\href{/padicField/17.1.0.1}{1} }$ ${\href{/padicField/19.6.0.1}{6} }{,}\,{\href{/padicField/19.2.0.1}{2} }{,}\,{\href{/padicField/19.1.0.1}{1} }$ ${\href{/padicField/23.8.0.1}{8} }{,}\,{\href{/padicField/23.1.0.1}{1} }$ ${\href{/padicField/29.6.0.1}{6} }{,}\,{\href{/padicField/29.3.0.1}{3} }$ ${\href{/padicField/31.6.0.1}{6} }{,}\,{\href{/padicField/31.2.0.1}{2} }{,}\,{\href{/padicField/31.1.0.1}{1} }$ ${\href{/padicField/37.4.0.1}{4} }^{2}{,}\,{\href{/padicField/37.1.0.1}{1} }$ ${\href{/padicField/41.6.0.1}{6} }{,}\,{\href{/padicField/41.3.0.1}{3} }$ ${\href{/padicField/43.3.0.1}{3} }^{3}$ ${\href{/padicField/47.6.0.1}{6} }{,}\,{\href{/padicField/47.3.0.1}{3} }$ ${\href{/padicField/53.8.0.1}{8} }{,}\,{\href{/padicField/53.1.0.1}{1} }$ ${\href{/padicField/59.8.0.1}{8} }{,}\,{\href{/padicField/59.1.0.1}{1} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display $\Q_{2}$$x + 1$$1$$1$$0$Trivial$[\ ]$
2.8.12.29$x^{8} + 2 x^{5} + 2 x^{2} + 6$$8$$1$$12$$\textrm{GL(2,3)}$$[4/3, 4/3, 2]_{3}^{2}$
\(3\) Copy content Toggle raw display 3.9.19.46$x^{9} + 6 x^{6} + 18 x^{4} + 18 x^{2} + 12$$9$$1$$19$$S_3\times C_3$$[2, 5/2]_{2}$

Artin representations

Label Dimension Conductor Artin stem field $G$ Ind $\chi(c)$
* 1.1.1t1.a.a$1$ $1$ \(\Q\) $C_1$ $1$ $1$
1.3.2t1.a.a$1$ $ 3 $ \(\Q(\sqrt{-3}) \) $C_2$ (as 2T1) $1$ $-1$
2.972.3t2.d.a$2$ $ 2^{2} \cdot 3^{5}$ 3.1.972.2 $S_3$ (as 3T2) $1$ $0$
2.3888.24t22.b.a$2$ $ 2^{4} \cdot 3^{5}$ 8.2.725594112.1 $\textrm{GL(2,3)}$ (as 8T23) $0$ $0$
2.3888.24t22.b.b$2$ $ 2^{4} \cdot 3^{5}$ 8.2.725594112.1 $\textrm{GL(2,3)}$ (as 8T23) $0$ $0$
3.3888.4t5.b.a$3$ $ 2^{4} \cdot 3^{5}$ 4.2.3888.1 $S_4$ (as 4T5) $1$ $1$
3.11664.6t8.b.a$3$ $ 2^{4} \cdot 3^{6}$ 4.2.3888.1 $S_4$ (as 4T5) $1$ $-1$
4.186624.8t23.b.a$4$ $ 2^{8} \cdot 3^{6}$ 8.2.725594112.1 $\textrm{GL(2,3)}$ (as 8T23) $1$ $0$
* 8.476...832.9t26.a.a$8$ $ 2^{12} \cdot 3^{19}$ 9.3.4760622968832.3 $((C_3^2:Q_8):C_3):C_2$ (as 9T26) $1$ $2$
8.476...832.18t157.a.a$8$ $ 2^{12} \cdot 3^{19}$ 9.3.4760622968832.3 $((C_3^2:Q_8):C_3):C_2$ (as 9T26) $1$ $-2$
16.111...616.24t1334.a.a$16$ $ 2^{26} \cdot 3^{34}$ 9.3.4760622968832.3 $((C_3^2:Q_8):C_3):C_2$ (as 9T26) $1$ $0$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.