Normalized defining polynomial
\( x^{9} - 2 x^{8} - 4 x^{7} + 16 x^{6} - 10 x^{5} - 20 x^{4} + 44 x^{3} - 32 x^{2} + 11 x + 2 \)
Invariants
| Degree: | $9$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[3, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-4696546738176=-\,2^{31}\cdot 3^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $25.58$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{5} a^{7} + \frac{1}{5} a^{6} + \frac{2}{5} a^{4} + \frac{1}{5} a^{3} - \frac{2}{5}$, $\frac{1}{5} a^{8} - \frac{1}{5} a^{6} + \frac{2}{5} a^{5} - \frac{1}{5} a^{4} - \frac{1}{5} a^{3} - \frac{2}{5} a + \frac{2}{5}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5371.90323422 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$PSU(3,2):C_2$ (as 9T19):
| A solvable group of order 144 |
| The 9 conjugacy class representatives for $(C_3^2:C_8):C_2$ |
| Character table for $(C_3^2:C_8):C_2$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
| Degree 12 sibling: | data not computed |
| Degree 18 siblings: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 36 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }$ | ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 2.8.31.98 | $x^{8} + 8 x^{4} + 58$ | $8$ | $1$ | $31$ | $QD_{16}$ | $[2, 3, 4, 5]$ | |
| $3$ | $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 3.8.7.1 | $x^{8} + 3$ | $8$ | $1$ | $7$ | $QD_{16}$ | $[\ ]_{8}^{2}$ |
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| 1.2e3_3.2t1.1c1 | $1$ | $ 2^{3} \cdot 3 $ | $x^{2} - 6$ | $C_2$ (as 2T1) | $1$ | $1$ | |
| 1.2e2.2t1.1c1 | $1$ | $ 2^{2}$ | $x^{2} + 1$ | $C_2$ (as 2T1) | $1$ | $-1$ | |
| 1.2e3_3.2t1.2c1 | $1$ | $ 2^{3} \cdot 3 $ | $x^{2} + 6$ | $C_2$ (as 2T1) | $1$ | $-1$ | |
| 2.2e8_3e2.4t3.1c1 | $2$ | $ 2^{8} \cdot 3^{2}$ | $x^{4} - 24$ | $D_{4}$ (as 4T3) | $1$ | $0$ | |
| 2.2e10_3e2.8t8.8c1 | $2$ | $ 2^{10} \cdot 3^{2}$ | $x^{8} - 24 x^{4} - 6$ | $QD_{16}$ (as 8T8) | $0$ | $0$ | |
| 2.2e10_3e2.8t8.8c2 | $2$ | $ 2^{10} \cdot 3^{2}$ | $x^{8} - 24 x^{4} - 6$ | $QD_{16}$ (as 8T8) | $0$ | $0$ | |
| 8.2e33_3e7.18t68.1c1 | $8$ | $ 2^{33} \cdot 3^{7}$ | $x^{9} - 2 x^{8} - 4 x^{7} + 16 x^{6} - 10 x^{5} - 20 x^{4} + 44 x^{3} - 32 x^{2} + 11 x + 2$ | $(C_3^2:C_8):C_2$ (as 9T19) | $1$ | $-2$ | |
| * | 8.2e31_3e7.9t19.1c1 | $8$ | $ 2^{31} \cdot 3^{7}$ | $x^{9} - 2 x^{8} - 4 x^{7} + 16 x^{6} - 10 x^{5} - 20 x^{4} + 44 x^{3} - 32 x^{2} + 11 x + 2$ | $(C_3^2:C_8):C_2$ (as 9T19) | $1$ | $2$ |