Normalized defining polynomial
\( x^{9} - 3x^{8} - 15x^{7} + 37x^{6} + 29x^{5} - 35x^{4} + 335x^{3} - 189x^{2} - 350x - 322 \)
Invariants
Degree: | $9$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[3, 3]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(-426083629572608\) \(\medspace = -\,2^{9}\cdot 7^{2}\cdot 19^{8}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(42.22\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2^{3/2}7^{2/3}19^{8/9}\approx 141.7795371895746$ | ||
Ramified primes: | \(2\), \(7\), \(19\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{-2}) \) | ||
$\card{ \Aut(K/\Q) }$: | $3$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2}a^{4}-\frac{1}{2}a^{2}$, $\frac{1}{4}a^{5}-\frac{1}{4}a^{4}-\frac{1}{4}a^{3}+\frac{1}{4}a^{2}-\frac{1}{2}a-\frac{1}{2}$, $\frac{1}{16}a^{6}-\frac{1}{8}a^{5}+\frac{1}{8}a^{3}+\frac{1}{16}a^{2}-\frac{1}{8}$, $\frac{1}{32}a^{7}-\frac{1}{32}a^{6}-\frac{1}{16}a^{5}+\frac{1}{16}a^{4}+\frac{3}{32}a^{3}+\frac{1}{32}a^{2}-\frac{1}{16}a-\frac{1}{16}$, $\frac{1}{369536}a^{8}-\frac{2411}{184768}a^{7}+\frac{2627}{369536}a^{6}+\frac{10831}{92384}a^{5}-\frac{82871}{369536}a^{4}-\frac{10359}{184768}a^{3}-\frac{165303}{369536}a^{2}+\frac{13289}{46192}a+\frac{68085}{184768}$
Monogenic: | No | |
Index: | Not computed | |
Inessential primes: | $2$ |
Class group and class number
$C_{9}$, which has order $9$
Unit group
Rank: | $5$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{35}{46192}a^{8}+\frac{239}{92384}a^{7}-\frac{3765}{92384}a^{6}+\frac{665}{46192}a^{5}+\frac{6249}{23096}a^{4}-\frac{21195}{92384}a^{3}+\frac{25869}{92384}a^{2}+\frac{34221}{46192}a-\frac{87097}{46192}$, $\frac{595}{369536}a^{8}-\frac{2593}{184768}a^{7}-\frac{7463}{369536}a^{6}+\frac{23757}{92384}a^{5}+\frac{24811}{369536}a^{4}-\frac{204837}{184768}a^{3}+\frac{33675}{369536}a^{2}+\frac{31219}{46192}a+\frac{138767}{184768}$, $\frac{2095}{369536}a^{8}-\frac{4569}{184768}a^{7}-\frac{16379}{369536}a^{6}+\frac{22221}{92384}a^{5}-\frac{71401}{369536}a^{4}+\frac{42779}{184768}a^{3}+\frac{569039}{369536}a^{2}-\frac{88383}{46192}a-\frac{256877}{184768}$, $\frac{1375}{184768}a^{8}-\frac{849}{92384}a^{7}-\frac{25495}{184768}a^{6}+\frac{1479}{46192}a^{5}+\frac{54231}{184768}a^{4}+\frac{6607}{92384}a^{3}+\frac{492675}{184768}a^{2}+\frac{66953}{23096}a+\frac{158911}{92384}$, $\frac{1069}{369536}a^{8}-\frac{2155}{184768}a^{7}-\frac{9449}{369536}a^{6}+\frac{7243}{92384}a^{5}-\frac{39035}{369536}a^{4}+\frac{46953}{184768}a^{3}+\frac{114069}{369536}a^{2}+\frac{7675}{46192}a-\frac{15727}{184768}$ | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 6385.89290769 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{3}\cdot(2\pi)^{3}\cdot 6385.89290769 \cdot 9}{2\cdot\sqrt{426083629572608}}\cr\approx \mathstrut & 2.76258921880 \end{aligned}\]
Galois group
$C_3\wr S_3$ (as 9T20):
A solvable group of order 162 |
The 22 conjugacy class representatives for $C_3 \wr S_3 $ |
Character table for $C_3 \wr S_3 $ |
Intermediate fields
3.1.2888.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 9 siblings: | data not computed |
Degree 18 siblings: | data not computed |
Degree 27 siblings: | data not computed |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.3.0.1}{3} }^{3}$ | ${\href{/padicField/5.6.0.1}{6} }{,}\,{\href{/padicField/5.3.0.1}{3} }$ | R | ${\href{/padicField/11.9.0.1}{9} }$ | ${\href{/padicField/13.6.0.1}{6} }{,}\,{\href{/padicField/13.3.0.1}{3} }$ | ${\href{/padicField/17.3.0.1}{3} }^{2}{,}\,{\href{/padicField/17.1.0.1}{1} }^{3}$ | R | ${\href{/padicField/23.2.0.1}{2} }^{3}{,}\,{\href{/padicField/23.1.0.1}{1} }^{3}$ | ${\href{/padicField/29.6.0.1}{6} }{,}\,{\href{/padicField/29.1.0.1}{1} }^{3}$ | ${\href{/padicField/31.6.0.1}{6} }{,}\,{\href{/padicField/31.1.0.1}{1} }^{3}$ | ${\href{/padicField/37.3.0.1}{3} }{,}\,{\href{/padicField/37.2.0.1}{2} }^{3}$ | ${\href{/padicField/41.9.0.1}{9} }$ | ${\href{/padicField/43.3.0.1}{3} }^{2}{,}\,{\href{/padicField/43.1.0.1}{1} }^{3}$ | ${\href{/padicField/47.6.0.1}{6} }{,}\,{\href{/padicField/47.3.0.1}{3} }$ | ${\href{/padicField/53.6.0.1}{6} }{,}\,{\href{/padicField/53.3.0.1}{3} }$ | ${\href{/padicField/59.3.0.1}{3} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ |
2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
2.3.0.1 | $x^{3} + x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
\(7\) | 7.3.2.3 | $x^{3} + 21$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
7.6.0.1 | $x^{6} + x^{4} + 5 x^{3} + 4 x^{2} + 6 x + 3$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
\(19\) | 19.9.8.2 | $x^{9} + 57$ | $9$ | $1$ | $8$ | $C_9$ | $[\ ]_{9}$ |