Normalized defining polynomial
\( x^{9} - 3x^{8} - 9x^{7} - 4x^{6} + 90x^{5} - 14x^{4} - 192x^{3} - 55x^{2} + 113x + 46 \)
Invariants
Degree: | $9$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[3, 3]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: |
\(-374415615421875\)
\(\medspace = -\,3^{3}\cdot 5^{6}\cdot 31^{6}\)
| sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(41.62\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Ramified primes: |
\(3\), \(5\), \(31\)
| sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{-3}) \) | ||
$\card{ \Aut(K/\Q) }$: | $1$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{10822781}a^{8}+\frac{2744227}{10822781}a^{7}-\frac{3997467}{10822781}a^{6}+\frac{1956186}{10822781}a^{5}-\frac{4942502}{10822781}a^{4}-\frac{4190311}{10822781}a^{3}-\frac{4811565}{10822781}a^{2}+\frac{723958}{10822781}a+\frac{1822626}{10822781}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
$C_{3}$, which has order $3$
Unit group
Rank: | $5$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: |
\( -1 \)
(order $2$)
| sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: |
$\frac{176794}{10822781}a^{8}-\frac{758430}{10822781}a^{7}-\frac{581498}{10822781}a^{6}-\frac{19171}{10822781}a^{5}+\frac{15816571}{10822781}a^{4}-\frac{24129046}{10822781}a^{3}-\frac{6881572}{10822781}a^{2}+\frac{12045327}{10822781}a+\frac{2682331}{10822781}$, $\frac{54208}{10822781}a^{8}-\frac{67629}{10822781}a^{7}-\frac{969954}{10822781}a^{6}-\frac{677550}{10822781}a^{5}+\frac{5618020}{10822781}a^{4}+\frac{10971721}{10822781}a^{3}-\frac{17938982}{10822781}a^{2}-\frac{9911423}{10822781}a-\frac{257541}{10822781}$, $\frac{830843}{10822781}a^{8}-\frac{2657128}{10822781}a^{7}-\frac{4909744}{10822781}a^{6}-\frac{6046315}{10822781}a^{5}+\frac{55428425}{10822781}a^{4}-\frac{61661217}{10822781}a^{3}-\frac{33658544}{10822781}a^{2}+\frac{51850862}{10822781}a+\frac{25004541}{10822781}$, $\frac{244293}{10822781}a^{8}-\frac{76972}{10822781}a^{7}-\frac{2853420}{10822781}a^{6}-\frac{8171338}{10822781}a^{5}+\frac{3275617}{10822781}a^{4}+\frac{19918543}{10822781}a^{3}+\frac{8950303}{10822781}a^{2}-\frac{8015408}{10822781}a-\frac{5259703}{10822781}$, $\frac{696323}{10822781}a^{8}-\frac{1836039}{10822781}a^{7}-\frac{6345670}{10822781}a^{6}-\frac{7089801}{10822781}a^{5}+\frac{55715073}{10822781}a^{4}+\frac{11831147}{10822781}a^{3}-\frac{92466354}{10822781}a^{2}-\frac{81469232}{10822781}a-\frac{18655329}{10822781}$
| sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 9251.92238198 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{3}\cdot(2\pi)^{3}\cdot 9251.92238198 \cdot 3}{2\cdot\sqrt{374415615421875}}\cr\approx \mathstrut & 1.42323250893 \end{aligned}\]
Galois group
$C_3^2:\GL(2,3)$ (as 9T26):
A solvable group of order 432 |
The 11 conjugacy class representatives for $((C_3^2:Q_8):C_3):C_2$ |
Character table for $((C_3^2:Q_8):C_3):C_2$ |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
Degree 12 sibling: | data not computed |
Degree 18 sibling: | data not computed |
Degree 24 siblings: | data not computed |
Degree 27 sibling: | data not computed |
Degree 36 siblings: | data not computed |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/padicField/2.8.0.1}{8} }{,}\,{\href{/padicField/2.1.0.1}{1} }$ | R | R | ${\href{/padicField/7.6.0.1}{6} }{,}\,{\href{/padicField/7.2.0.1}{2} }{,}\,{\href{/padicField/7.1.0.1}{1} }$ | ${\href{/padicField/11.8.0.1}{8} }{,}\,{\href{/padicField/11.1.0.1}{1} }$ | ${\href{/padicField/13.4.0.1}{4} }^{2}{,}\,{\href{/padicField/13.1.0.1}{1} }$ | ${\href{/padicField/17.8.0.1}{8} }{,}\,{\href{/padicField/17.1.0.1}{1} }$ | ${\href{/padicField/19.6.0.1}{6} }{,}\,{\href{/padicField/19.2.0.1}{2} }{,}\,{\href{/padicField/19.1.0.1}{1} }$ | ${\href{/padicField/23.8.0.1}{8} }{,}\,{\href{/padicField/23.1.0.1}{1} }$ | ${\href{/padicField/29.6.0.1}{6} }{,}\,{\href{/padicField/29.3.0.1}{3} }$ | R | ${\href{/padicField/37.3.0.1}{3} }^{3}$ | ${\href{/padicField/41.2.0.1}{2} }^{3}{,}\,{\href{/padicField/41.1.0.1}{1} }^{3}$ | ${\href{/padicField/43.4.0.1}{4} }^{2}{,}\,{\href{/padicField/43.1.0.1}{1} }$ | ${\href{/padicField/47.8.0.1}{8} }{,}\,{\href{/padicField/47.1.0.1}{1} }$ | ${\href{/padicField/53.6.0.1}{6} }{,}\,{\href{/padicField/53.3.0.1}{3} }$ | ${\href{/padicField/59.8.0.1}{8} }{,}\,{\href{/padicField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(3\)
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
3.2.1.1 | $x^{2} + 6$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
3.2.0.1 | $x^{2} + 2 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
3.4.2.1 | $x^{4} + 4 x^{3} + 14 x^{2} + 20 x + 13$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
\(5\)
| 5.9.6.1 | $x^{9} + 9 x^{7} + 24 x^{6} + 27 x^{5} + 9 x^{4} - 186 x^{3} + 216 x^{2} - 504 x + 647$ | $3$ | $3$ | $6$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ |
\(31\)
| 31.9.6.1 | $x^{9} + 3 x^{7} + 177 x^{6} + 3 x^{5} + 75 x^{4} - 12992 x^{3} + 177 x^{2} - 6018 x + 205410$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
Artin representations
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
---|---|---|---|---|---|---|---|
* | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
1.3.2t1.a.a | $1$ | $ 3 $ | \(\Q(\sqrt{-3}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
2.72075.3t2.a.a | $2$ | $ 3 \cdot 5^{2} \cdot 31^{2}$ | 3.1.72075.1 | $S_3$ (as 3T2) | $1$ | $0$ | |
2.72075.24t22.a.a | $2$ | $ 3 \cdot 5^{2} \cdot 31^{2}$ | 8.2.15584416875.1 | $\textrm{GL(2,3)}$ (as 8T23) | $0$ | $0$ | |
2.72075.24t22.a.b | $2$ | $ 3 \cdot 5^{2} \cdot 31^{2}$ | 8.2.15584416875.1 | $\textrm{GL(2,3)}$ (as 8T23) | $0$ | $0$ | |
3.72075.4t5.a.a | $3$ | $ 3 \cdot 5^{2} \cdot 31^{2}$ | 4.2.72075.1 | $S_4$ (as 4T5) | $1$ | $1$ | |
3.216225.6t8.a.a | $3$ | $ 3^{2} \cdot 5^{2} \cdot 31^{2}$ | 4.2.72075.1 | $S_4$ (as 4T5) | $1$ | $-1$ | |
4.216225.8t23.a.a | $4$ | $ 3^{2} \cdot 5^{2} \cdot 31^{2}$ | 8.2.15584416875.1 | $\textrm{GL(2,3)}$ (as 8T23) | $1$ | $0$ | |
* | 8.374...875.9t26.a.a | $8$ | $ 3^{3} \cdot 5^{6} \cdot 31^{6}$ | 9.3.374415615421875.1 | $((C_3^2:Q_8):C_3):C_2$ (as 9T26) | $1$ | $2$ |
8.336...875.18t157.a.a | $8$ | $ 3^{5} \cdot 5^{6} \cdot 31^{6}$ | 9.3.374415615421875.1 | $((C_3^2:Q_8):C_3):C_2$ (as 9T26) | $1$ | $-2$ | |
16.525...625.24t1334.a.a | $16$ | $ 3^{8} \cdot 5^{10} \cdot 31^{10}$ | 9.3.374415615421875.1 | $((C_3^2:Q_8):C_3):C_2$ (as 9T26) | $1$ | $0$ |