magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-5, -9, 3, 6, 0, 0, -3, 3, 0, 1]);
sage: x = polygen(QQ); K.<a> = NumberField(x^9 + 3*x^7 - 3*x^6 + 6*x^3 + 3*x^2 - 9*x - 5)
gp: K = bnfinit(x^9 + 3*x^7 - 3*x^6 + 6*x^3 + 3*x^2 - 9*x - 5, 1)
Normalized defining polynomial
\( x^{9} + 3 x^{7} - 3 x^{6} + 6 x^{3} + 3 x^{2} - 9 x - 5 \)
magma: DefiningPolynomial(K);
sage: K.defining_polynomial()
gp: K.pol
Invariants
| Degree: | $9$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[3, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-36889110963=-\,3^{9}\cdot 37^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $14.93$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{337} a^{8} + \frac{153}{337} a^{7} + \frac{159}{337} a^{6} + \frac{60}{337} a^{5} + \frac{81}{337} a^{4} - \frac{76}{337} a^{3} - \frac{164}{337} a^{2} - \frac{151}{337} a + \frac{141}{337}$
magma: IntegralBasis(K);
sage: K.integral_basis()
gp: K.zk
Class group and class number
Trivial group, which has order $1$
magma: ClassGroup(K);
sage: K.class_group().invariants()
gp: K.clgp
Unit group
magma: UK, f := UnitGroup(K);
sage: UK = K.unit_group()
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 142.686446524 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$AGL(2,3)$ (as 9T26):
magma: GaloisGroup(K);
sage: K.galois_group(type='pari')
gp: polgalois(K.pol)
| A solvable group of order 432 |
| The 11 conjugacy class representatives for $((C_3^2:Q_8):C_3):C_2$ |
| Character table for $((C_3^2:Q_8):C_3):C_2$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
| Degree 12 sibling: | data not computed |
| Degree 18 sibling: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 27 sibling: | data not computed |
| Degree 36 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/5.8.0.1}{8} }{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{3}$ | R | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
magma: idealfactors := Factorization(p*Integers(K)); // get the data
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
gp: idealfactors = idealprimedec(K, p); \\ get the data
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.9.9.12 | $x^{9} + 6 x + 6$ | $9$ | $1$ | $9$ | $(C_3^2:C_8):C_2$ | $[9/8, 9/8]_{8}^{2}$ |
| $37$ | $\Q_{37}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 37.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 37.6.4.1 | $x^{6} + 518 x^{3} + 171125$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| 1.3.2t1.1c1 | $1$ | $ 3 $ | $x^{2} - x + 1$ | $C_2$ (as 2T1) | $1$ | $-1$ | |
| 2.3_37e2.3t2.1c1 | $2$ | $ 3 \cdot 37^{2}$ | $x^{3} - 37$ | $S_3$ (as 3T2) | $1$ | $0$ | |
| 2.3e2_37e2.24t22.1c1 | $2$ | $ 3^{2} \cdot 37^{2}$ | $x^{8} + 3 x^{6} + 6 x^{4} - 3$ | $\textrm{GL(2,3)}$ (as 8T23) | $0$ | $0$ | |
| 2.3e2_37e2.24t22.1c2 | $2$ | $ 3^{2} \cdot 37^{2}$ | $x^{8} + 3 x^{6} + 6 x^{4} - 3$ | $\textrm{GL(2,3)}$ (as 8T23) | $0$ | $0$ | |
| 3.3e3_37e2.4t5.1c1 | $3$ | $ 3^{3} \cdot 37^{2}$ | $x^{4} - x^{3} + 3 x^{2} - 7 x + 1$ | $S_4$ (as 4T5) | $1$ | $1$ | |
| 3.3e2_37e2.6t8.1c1 | $3$ | $ 3^{2} \cdot 37^{2}$ | $x^{4} - x^{3} + 3 x^{2} - 7 x + 1$ | $S_4$ (as 4T5) | $1$ | $-1$ | |
| 4.3e4_37e2.8t23.1c1 | $4$ | $ 3^{4} \cdot 37^{2}$ | $x^{8} + 3 x^{6} + 6 x^{4} - 3$ | $\textrm{GL(2,3)}$ (as 8T23) | $1$ | $0$ | |
| * | 8.3e9_37e4.9t26.1c1 | $8$ | $ 3^{9} \cdot 37^{4}$ | $x^{9} + 3 x^{7} - 3 x^{6} + 6 x^{3} + 3 x^{2} - 9 x - 5$ | $((C_3^2:Q_8):C_3):C_2$ (as 9T26) | $1$ | $2$ |
| 8.3e9_37e4.18t157.1c1 | $8$ | $ 3^{9} \cdot 37^{4}$ | $x^{9} + 3 x^{7} - 3 x^{6} + 6 x^{3} + 3 x^{2} - 9 x - 5$ | $((C_3^2:Q_8):C_3):C_2$ (as 9T26) | $1$ | $-2$ | |
| 16.3e18_37e12.24t1334.1c1 | $16$ | $ 3^{18} \cdot 37^{12}$ | $x^{9} + 3 x^{7} - 3 x^{6} + 6 x^{3} + 3 x^{2} - 9 x - 5$ | $((C_3^2:Q_8):C_3):C_2$ (as 9T26) | $1$ | $0$ |
Data is given for all irreducible
representations of the Galois group for the Galois closure
of this field. Those marked with * are summands in the
permutation representation coming from this field. Representations
which appear with multiplicity greater than one are indicated
by exponents on the *.