Normalized defining polynomial
\( x^{9} - 8054 x^{7} - 86135 x^{6} + 21555397 x^{5} + 463533973 x^{4} - 16652946295 x^{3} - 613128224240 x^{2} - 6510682901835 x - 24496392693493 \)
Invariants
| Degree: | $9$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[3, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-345646515675090906115747805101568=-\,2^{9}\cdot 7^{6}\cdot 13^{3}\cdot 31^{7}\cdot 37^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $4124.81$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 13, 31, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{66526} a^{6} - \frac{6443}{66526} a^{5} - \frac{5361}{66526} a^{4} - \frac{16621}{66526} a^{3} + \frac{24813}{66526} a^{2} + \frac{4869}{66526} a - \frac{10463}{66526}$, $\frac{1}{4590294} a^{7} - \frac{1}{199578} a^{6} - \frac{1387295}{4590294} a^{5} - \frac{7537}{199578} a^{4} + \frac{2154529}{4590294} a^{3} - \frac{73417}{199578} a^{2} + \frac{580031}{4590294} a + \frac{9086}{99789}$, $\frac{1}{110020383565438216947319933398} a^{8} + \frac{136627695641928029882}{2391747468813874281463476813} a^{7} + \frac{8915673451471247248652}{1896903164921348568057240231} a^{6} + \frac{365499362248308430905896711}{2391747468813874281463476813} a^{5} - \frac{23427799851332024246076552776}{55010191782719108473659966699} a^{4} + \frac{867598365262659380768199983}{2391747468813874281463476813} a^{3} - \frac{3991479012979176646560376079}{18336730594239702824553322233} a^{2} - \frac{822245830711405752012600961}{4783494937627748562926953626} a + \frac{28661847183771366864895177}{103989020383211925281020731}$
Class group and class number
$C_{3}\times C_{6}\times C_{6}\times C_{21642}$, which has order $2337336$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3103842.3227068773 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3$ (as 9T4):
| A solvable group of order 18 |
| The 9 conjugacy class representatives for $S_3\times C_3$ |
| Character table for $S_3\times C_3$ |
Intermediate fields
| 3.3.64464841.3, 3.1.119288.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 6 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/17.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{3}$ | R | R | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 2.6.9.1 | $x^{6} + 4 x^{4} + 4 x^{2} - 8$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ | |
| $7$ | 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| $13$ | 13.3.0.1 | $x^{3} - 2 x + 6$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 13.6.3.2 | $x^{6} - 338 x^{2} + 13182$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $31$ | 31.3.2.3 | $x^{3} - 1519$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 31.6.5.6 | $x^{6} + 521017$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| $37$ | 37.3.2.3 | $x^{3} - 148$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 37.6.5.6 | $x^{6} + 1184$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |