Properties

Label 9.3.28400117792.1
Degree $9$
Signature $[3, 3]$
Discriminant $-28400117792$
Root discriminant \(14.50\)
Ramified primes $2,31$
Class number $1$
Class group trivial
Galois group $S_3 \wr C_3 $ (as 9T28)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^9 - 3*x^8 + 5*x^7 - 8*x^6 - x^5 + 2*x^4 + 5*x^3 + 6*x^2 + 2*x - 1)
 
gp: K = bnfinit(y^9 - 3*y^8 + 5*y^7 - 8*y^6 - y^5 + 2*y^4 + 5*y^3 + 6*y^2 + 2*y - 1, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^9 - 3*x^8 + 5*x^7 - 8*x^6 - x^5 + 2*x^4 + 5*x^3 + 6*x^2 + 2*x - 1);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^9 - 3*x^8 + 5*x^7 - 8*x^6 - x^5 + 2*x^4 + 5*x^3 + 6*x^2 + 2*x - 1)
 

\( x^{9} - 3x^{8} + 5x^{7} - 8x^{6} - x^{5} + 2x^{4} + 5x^{3} + 6x^{2} + 2x - 1 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $9$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[3, 3]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(-28400117792\) \(\medspace = -\,2^{5}\cdot 31^{6}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(14.50\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{11/6}31^{2/3}\approx 35.16652493714988$
Ramified primes:   \(2\), \(31\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{-2}) \)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2}a^{6}-\frac{1}{2}a^{3}-\frac{1}{2}a-\frac{1}{2}$, $\frac{1}{2}a^{7}-\frac{1}{2}a^{4}-\frac{1}{2}a^{2}-\frac{1}{2}a$, $\frac{1}{116}a^{8}+\frac{1}{29}a^{7}-\frac{25}{116}a^{6}-\frac{9}{116}a^{5}+\frac{13}{29}a^{4}-\frac{10}{29}a^{3}+\frac{15}{116}a^{2}+\frac{53}{116}a+\frac{25}{116}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $2$

Class group and class number

Trivial group, which has order $1$

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $5$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $a$, $\frac{9}{29}a^{8}-\frac{73}{58}a^{7}+\frac{159}{58}a^{6}-\frac{139}{29}a^{5}+\frac{211}{58}a^{4}-\frac{53}{58}a^{3}+\frac{67}{58}a^{2}+\frac{42}{29}a-\frac{101}{58}$, $\frac{25}{58}a^{8}-\frac{37}{29}a^{7}+\frac{129}{58}a^{6}-\frac{225}{58}a^{5}+\frac{12}{29}a^{4}-\frac{7}{29}a^{3}+\frac{143}{58}a^{2}+\frac{165}{58}a+\frac{45}{58}$, $\frac{33}{58}a^{8}-\frac{50}{29}a^{7}+\frac{161}{58}a^{6}-\frac{239}{58}a^{5}-\frac{41}{29}a^{4}+\frac{65}{29}a^{3}+\frac{147}{58}a^{2}+\frac{125}{58}a+\frac{71}{58}$, $\frac{39}{58}a^{8}-\frac{67}{29}a^{7}+\frac{243}{58}a^{6}-\frac{409}{58}a^{5}+\frac{57}{29}a^{4}+\frac{32}{29}a^{3}+\frac{237}{58}a^{2}+\frac{269}{58}a+\frac{47}{58}$ Copy content Toggle raw display
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 245.541170211 \)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{3}\cdot(2\pi)^{3}\cdot 245.541170211 \cdot 1}{2\cdot\sqrt{28400117792}}\cr\approx \mathstrut & 1.44565228512 \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^9 - 3*x^8 + 5*x^7 - 8*x^6 - x^5 + 2*x^4 + 5*x^3 + 6*x^2 + 2*x - 1)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^9 - 3*x^8 + 5*x^7 - 8*x^6 - x^5 + 2*x^4 + 5*x^3 + 6*x^2 + 2*x - 1, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^9 - 3*x^8 + 5*x^7 - 8*x^6 - x^5 + 2*x^4 + 5*x^3 + 6*x^2 + 2*x - 1);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^9 - 3*x^8 + 5*x^7 - 8*x^6 - x^5 + 2*x^4 + 5*x^3 + 6*x^2 + 2*x - 1);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$S_3\wr C_3$ (as 9T28):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 648
The 17 conjugacy class representatives for $S_3 \wr C_3 $
Character table for $S_3 \wr C_3 $

Intermediate fields

3.3.961.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 12 sibling: data not computed
Degree 18 siblings: data not computed
Degree 24 siblings: data not computed
Degree 27 siblings: data not computed
Degree 36 siblings: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R ${\href{/padicField/3.9.0.1}{9} }$ ${\href{/padicField/5.6.0.1}{6} }{,}\,{\href{/padicField/5.3.0.1}{3} }$ ${\href{/padicField/7.6.0.1}{6} }{,}\,{\href{/padicField/7.3.0.1}{3} }$ ${\href{/padicField/11.3.0.1}{3} }^{3}$ ${\href{/padicField/13.6.0.1}{6} }{,}\,{\href{/padicField/13.3.0.1}{3} }$ ${\href{/padicField/17.9.0.1}{9} }$ ${\href{/padicField/19.9.0.1}{9} }$ ${\href{/padicField/23.3.0.1}{3} }^{2}{,}\,{\href{/padicField/23.2.0.1}{2} }{,}\,{\href{/padicField/23.1.0.1}{1} }$ ${\href{/padicField/29.3.0.1}{3} }^{2}{,}\,{\href{/padicField/29.2.0.1}{2} }{,}\,{\href{/padicField/29.1.0.1}{1} }$ R ${\href{/padicField/37.6.0.1}{6} }{,}\,{\href{/padicField/37.3.0.1}{3} }$ ${\href{/padicField/41.9.0.1}{9} }$ ${\href{/padicField/43.3.0.1}{3} }^{3}$ ${\href{/padicField/47.3.0.1}{3} }^{2}{,}\,{\href{/padicField/47.2.0.1}{2} }{,}\,{\href{/padicField/47.1.0.1}{1} }$ ${\href{/padicField/53.6.0.1}{6} }{,}\,{\href{/padicField/53.3.0.1}{3} }$ ${\href{/padicField/59.9.0.1}{9} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display $\Q_{2}$$x + 1$$1$$1$$0$Trivial$[\ ]$
2.2.3.4$x^{2} + 10$$2$$1$$3$$C_2$$[3]$
2.3.2.1$x^{3} + 2$$3$$1$$2$$S_3$$[\ ]_{3}^{2}$
2.3.0.1$x^{3} + x + 1$$1$$3$$0$$C_3$$[\ ]^{3}$
\(31\) Copy content Toggle raw display 31.3.2.1$x^{3} + 31$$3$$1$$2$$C_3$$[\ ]_{3}$
31.6.4.1$x^{6} + 87 x^{5} + 2532 x^{4} + 24973 x^{3} + 10293 x^{2} + 78438 x + 748956$$3$$2$$4$$C_6$$[\ ]_{3}^{2}$

Artin representations

Label Dimension Conductor Artin stem field $G$ Ind $\chi(c)$
* 1.1.1t1.a.a$1$ $1$ \(\Q\) $C_1$ $1$ $1$
1.8.2t1.b.a$1$ $ 2^{3}$ \(\Q(\sqrt{-2}) \) $C_2$ (as 2T1) $1$ $-1$
1.248.6t1.c.a$1$ $ 2^{3} \cdot 31 $ 6.0.472842752.1 $C_6$ (as 6T1) $0$ $-1$
* 1.31.3t1.a.a$1$ $ 31 $ 3.3.961.1 $C_3$ (as 3T1) $0$ $1$
* 1.31.3t1.a.b$1$ $ 31 $ 3.3.961.1 $C_3$ (as 3T1) $0$ $1$
1.248.6t1.c.b$1$ $ 2^{3} \cdot 31 $ 6.0.472842752.1 $C_6$ (as 6T1) $0$ $-1$
3.7688.6t6.a.a$3$ $ 2^{3} \cdot 31^{2}$ 6.0.7388168.1 $A_4\times C_2$ (as 6T6) $1$ $-3$
3.61504.4t4.a.a$3$ $ 2^{6} \cdot 31^{2}$ 4.4.61504.1 $A_4$ (as 4T4) $1$ $3$
6.472842752.18t197.a.a$6$ $ 2^{9} \cdot 31^{4}$ 9.3.28400117792.1 $S_3 \wr C_3 $ (as 9T28) $1$ $0$
* 6.29552672.9t28.a.a$6$ $ 2^{5} \cdot 31^{4}$ 9.3.28400117792.1 $S_3 \wr C_3 $ (as 9T28) $1$ $0$
6.30261936128.18t202.a.a$6$ $ 2^{15} \cdot 31^{4}$ 9.3.28400117792.1 $S_3 \wr C_3 $ (as 9T28) $1$ $0$
6.1891371008.18t197.a.a$6$ $ 2^{11} \cdot 31^{4}$ 9.3.28400117792.1 $S_3 \wr C_3 $ (as 9T28) $1$ $0$
8.60523872256.12t176.a.a$8$ $ 2^{16} \cdot 31^{4}$ 9.3.28400117792.1 $S_3 \wr C_3 $ (as 9T28) $1$ $0$
8.581...016.24t1539.a.a$8$ $ 2^{16} \cdot 31^{6}$ 9.3.28400117792.1 $S_3 \wr C_3 $ (as 9T28) $0$ $0$
8.581...016.24t1539.a.b$8$ $ 2^{16} \cdot 31^{6}$ 9.3.28400117792.1 $S_3 \wr C_3 $ (as 9T28) $0$ $0$
12.223...504.18t206.a.a$12$ $ 2^{18} \cdot 31^{8}$ 9.3.28400117792.1 $S_3 \wr C_3 $ (as 9T28) $1$ $0$
12.572...024.36t1101.a.a$12$ $ 2^{26} \cdot 31^{8}$ 9.3.28400117792.1 $S_3 \wr C_3 $ (as 9T28) $1$ $0$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.