Normalized defining polynomial
\( x^{9} - 3x^{7} - 9x^{6} + 3x^{5} + 18x^{4} + 15x^{3} - 9x^{2} - 27x + 6 \)
Invariants
Degree: | $9$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[3, 3]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: |
\(-2824440448203\)
\(\medspace = -\,3^{13}\cdot 11^{6}\)
| sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(24.18\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $3^{85/54}11^{2/3}\approx 27.879564620720714$ | ||
Ramified primes: |
\(3\), \(11\)
| sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{-3}) \) | ||
$\card{ \Aut(K/\Q) }$: | $1$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{193}a^{8}-\frac{31}{193}a^{7}-\frac{7}{193}a^{6}+\frac{15}{193}a^{5}-\frac{76}{193}a^{4}+\frac{58}{193}a^{3}-\frac{46}{193}a^{2}+\frac{66}{193}a+\frac{50}{193}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $5$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: |
\( -1 \)
(order $2$)
| sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: |
$\frac{35}{193}a^{8}+\frac{73}{193}a^{7}-\frac{52}{193}a^{6}-\frac{440}{193}a^{5}-\frac{537}{193}a^{4}+\frac{100}{193}a^{3}+\frac{899}{193}a^{2}+\frac{766}{193}a+\frac{13}{193}$, $\frac{1}{193}a^{8}-\frac{31}{193}a^{7}-\frac{7}{193}a^{6}+\frac{15}{193}a^{5}+\frac{310}{193}a^{4}+\frac{58}{193}a^{3}-\frac{46}{193}a^{2}-\frac{513}{193}a-\frac{143}{193}$, $\frac{7}{193}a^{8}-\frac{24}{193}a^{7}-\frac{49}{193}a^{6}-\frac{88}{193}a^{5}+\frac{240}{193}a^{4}+\frac{406}{193}a^{3}+\frac{450}{193}a^{2}-\frac{117}{193}a-\frac{229}{193}$, $\frac{6}{193}a^{8}+\frac{7}{193}a^{7}-\frac{42}{193}a^{6}-\frac{103}{193}a^{5}+\frac{123}{193}a^{4}+\frac{155}{193}a^{3}+\frac{110}{193}a^{2}-\frac{376}{193}a+\frac{107}{193}$, $\frac{167}{193}a^{8}+\frac{227}{193}a^{7}-\frac{204}{193}a^{6}-\frac{1741}{193}a^{5}-\frac{1884}{193}a^{4}+\frac{422}{193}a^{3}+\frac{2933}{193}a^{2}+\frac{2723}{193}a-\frac{721}{193}$
| sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 1522.69940225 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{3}\cdot(2\pi)^{3}\cdot 1522.69940225 \cdot 1}{2\cdot\sqrt{2824440448203}}\cr\approx \mathstrut & 0.898974892546 \end{aligned}\]
Galois group
$C_3^2:\GL(2,3)$ (as 9T26):
A solvable group of order 432 |
The 11 conjugacy class representatives for $((C_3^2:Q_8):C_3):C_2$ |
Character table for $((C_3^2:Q_8):C_3):C_2$ |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
Degree 12 sibling: | data not computed |
Degree 18 sibling: | data not computed |
Degree 24 siblings: | data not computed |
Degree 27 sibling: | data not computed |
Degree 36 siblings: | data not computed |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/padicField/2.8.0.1}{8} }{,}\,{\href{/padicField/2.1.0.1}{1} }$ | R | ${\href{/padicField/5.8.0.1}{8} }{,}\,{\href{/padicField/5.1.0.1}{1} }$ | ${\href{/padicField/7.6.0.1}{6} }{,}\,{\href{/padicField/7.2.0.1}{2} }{,}\,{\href{/padicField/7.1.0.1}{1} }$ | R | ${\href{/padicField/13.6.0.1}{6} }{,}\,{\href{/padicField/13.2.0.1}{2} }{,}\,{\href{/padicField/13.1.0.1}{1} }$ | ${\href{/padicField/17.8.0.1}{8} }{,}\,{\href{/padicField/17.1.0.1}{1} }$ | ${\href{/padicField/19.4.0.1}{4} }^{2}{,}\,{\href{/padicField/19.1.0.1}{1} }$ | ${\href{/padicField/23.8.0.1}{8} }{,}\,{\href{/padicField/23.1.0.1}{1} }$ | ${\href{/padicField/29.6.0.1}{6} }{,}\,{\href{/padicField/29.3.0.1}{3} }$ | ${\href{/padicField/31.6.0.1}{6} }{,}\,{\href{/padicField/31.2.0.1}{2} }{,}\,{\href{/padicField/31.1.0.1}{1} }$ | ${\href{/padicField/37.4.0.1}{4} }^{2}{,}\,{\href{/padicField/37.1.0.1}{1} }$ | ${\href{/padicField/41.8.0.1}{8} }{,}\,{\href{/padicField/41.1.0.1}{1} }$ | ${\href{/padicField/43.4.0.1}{4} }^{2}{,}\,{\href{/padicField/43.1.0.1}{1} }$ | ${\href{/padicField/47.8.0.1}{8} }{,}\,{\href{/padicField/47.1.0.1}{1} }$ | ${\href{/padicField/53.6.0.1}{6} }{,}\,{\href{/padicField/53.3.0.1}{3} }$ | ${\href{/padicField/59.8.0.1}{8} }{,}\,{\href{/padicField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(3\)
| 3.9.13.7 | $x^{9} + 3 x^{5} + 6 x^{3} + 3$ | $9$ | $1$ | $13$ | $C_3^2 : D_{6} $ | $[3/2, 3/2, 5/3]_{2}^{2}$ |
\(11\)
| 11.9.6.1 | $x^{9} + 6 x^{7} + 60 x^{6} + 12 x^{5} + 42 x^{4} - 1465 x^{3} + 240 x^{2} - 1560 x + 8088$ | $3$ | $3$ | $6$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ |
Artin representations
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
---|---|---|---|---|---|---|---|
* | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
1.3.2t1.a.a | $1$ | $ 3 $ | \(\Q(\sqrt{-3}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
2.3267.3t2.b.a | $2$ | $ 3^{3} \cdot 11^{2}$ | 3.1.3267.1 | $S_3$ (as 3T2) | $1$ | $0$ | |
2.3267.24t22.b.a | $2$ | $ 3^{3} \cdot 11^{2}$ | 8.2.32019867.2 | $\textrm{GL(2,3)}$ (as 8T23) | $0$ | $0$ | |
2.3267.24t22.b.b | $2$ | $ 3^{3} \cdot 11^{2}$ | 8.2.32019867.2 | $\textrm{GL(2,3)}$ (as 8T23) | $0$ | $0$ | |
3.3267.4t5.c.a | $3$ | $ 3^{3} \cdot 11^{2}$ | 4.2.3267.1 | $S_4$ (as 4T5) | $1$ | $1$ | |
3.9801.6t8.e.a | $3$ | $ 3^{4} \cdot 11^{2}$ | 4.2.3267.1 | $S_4$ (as 4T5) | $1$ | $-1$ | |
4.9801.8t23.b.a | $4$ | $ 3^{4} \cdot 11^{2}$ | 8.2.32019867.2 | $\textrm{GL(2,3)}$ (as 8T23) | $1$ | $0$ | |
* | 8.282...203.9t26.a.a | $8$ | $ 3^{13} \cdot 11^{6}$ | 9.3.2824440448203.2 | $((C_3^2:Q_8):C_3):C_2$ (as 9T26) | $1$ | $2$ |
8.282...203.18t157.a.a | $8$ | $ 3^{13} \cdot 11^{6}$ | 9.3.2824440448203.2 | $((C_3^2:Q_8):C_3):C_2$ (as 9T26) | $1$ | $-2$ | |
16.659...729.24t1334.a.a | $16$ | $ 3^{26} \cdot 11^{10}$ | 9.3.2824440448203.2 | $((C_3^2:Q_8):C_3):C_2$ (as 9T26) | $1$ | $0$ |