Normalized defining polynomial
\( x^{9} - 3x^{8} + 9x^{6} + 3x^{5} - 6x^{3} - 12x^{2} - 9x - 2 \)
Invariants
| Degree: | $9$ |
| |
| Signature: | $[3, 3]$ |
| |
| Discriminant: |
\(-210082347387\)
\(\medspace = -\,3^{15}\cdot 11^{4}\)
|
| |
| Root discriminant: | \(18.12\) |
| |
| Galois root discriminant: | $3^{97/54}11^{2/3}\approx 35.58876626592777$ | ||
| Ramified primes: |
\(3\), \(11\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{-3}) \) | ||
| $\Aut(K/\Q)$: | $C_1$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{271}a^{8}+\frac{112}{271}a^{7}-\frac{128}{271}a^{6}-\frac{77}{271}a^{5}+\frac{91}{271}a^{4}-\frac{104}{271}a^{3}-\frac{42}{271}a^{2}+\frac{36}{271}a+\frac{66}{271}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ |
| |
| Narrow class group: | Trivial group, which has order $1$ |
|
Unit group
| Rank: | $5$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{260}{271}a^{8}-\frac{961}{271}a^{7}+\frac{595}{271}a^{6}+\frac{2202}{271}a^{5}-\frac{1001}{271}a^{4}+\frac{331}{271}a^{3}-\frac{1706}{271}a^{2}-\frac{2293}{271}a-\frac{455}{271}$, $\frac{296}{271}a^{8}-\frac{994}{271}a^{7}+\frac{323}{271}a^{6}+\frac{2682}{271}a^{5}-\frac{164}{271}a^{4}-\frac{161}{271}a^{3}-\frac{1592}{271}a^{2}-\frac{3165}{271}a-\frac{1331}{271}$, $\frac{672}{271}a^{8}-\frac{2242}{271}a^{7}+\frac{704}{271}a^{6}+\frac{5979}{271}a^{5}-\frac{94}{271}a^{4}-\frac{241}{271}a^{3}-\frac{4105}{271}a^{2}-\frac{6973}{271}a-\frac{3073}{271}$, $\frac{26}{271}a^{8}-\frac{69}{271}a^{7}-\frac{76}{271}a^{6}+\frac{437}{271}a^{5}-\frac{73}{271}a^{4}-\frac{265}{271}a^{3}+\frac{263}{271}a^{2}-\frac{419}{271}a-\frac{181}{271}$, $\frac{434}{271}a^{8}-\frac{1527}{271}a^{7}+\frac{816}{271}a^{6}+\frac{3438}{271}a^{5}-\frac{614}{271}a^{4}+\frac{663}{271}a^{3}-\frac{2510}{271}a^{2}-\frac{4430}{271}a-\frac{1979}{271}$
|
| |
| Regulator: | \( 406.606363501 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{3}\cdot(2\pi)^{3}\cdot 406.606363501 \cdot 1}{2\cdot\sqrt{210082347387}}\cr\approx \mathstrut & 0.880195181742 \end{aligned}\]
Galois group
$C_3^2:\GL(2,3)$ (as 9T26):
| A solvable group of order 432 |
| The 11 conjugacy class representatives for $((C_3^2:Q_8):C_3):C_2$ |
| Character table for $((C_3^2:Q_8):C_3):C_2$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
| Degree 12 sibling: | data not computed |
| Degree 18 sibling: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 27 sibling: | data not computed |
| Degree 36 siblings: | data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/padicField/2.8.0.1}{8} }{,}\,{\href{/padicField/2.1.0.1}{1} }$ | R | ${\href{/padicField/5.8.0.1}{8} }{,}\,{\href{/padicField/5.1.0.1}{1} }$ | ${\href{/padicField/7.6.0.1}{6} }{,}\,{\href{/padicField/7.2.0.1}{2} }{,}\,{\href{/padicField/7.1.0.1}{1} }$ | R | ${\href{/padicField/13.6.0.1}{6} }{,}\,{\href{/padicField/13.2.0.1}{2} }{,}\,{\href{/padicField/13.1.0.1}{1} }$ | ${\href{/padicField/17.8.0.1}{8} }{,}\,{\href{/padicField/17.1.0.1}{1} }$ | ${\href{/padicField/19.4.0.1}{4} }^{2}{,}\,{\href{/padicField/19.1.0.1}{1} }$ | ${\href{/padicField/23.8.0.1}{8} }{,}\,{\href{/padicField/23.1.0.1}{1} }$ | ${\href{/padicField/29.2.0.1}{2} }^{3}{,}\,{\href{/padicField/29.1.0.1}{1} }^{3}$ | ${\href{/padicField/31.6.0.1}{6} }{,}\,{\href{/padicField/31.2.0.1}{2} }{,}\,{\href{/padicField/31.1.0.1}{1} }$ | ${\href{/padicField/37.4.0.1}{4} }^{2}{,}\,{\href{/padicField/37.1.0.1}{1} }$ | ${\href{/padicField/41.8.0.1}{8} }{,}\,{\href{/padicField/41.1.0.1}{1} }$ | ${\href{/padicField/43.4.0.1}{4} }^{2}{,}\,{\href{/padicField/43.1.0.1}{1} }$ | ${\href{/padicField/47.8.0.1}{8} }{,}\,{\href{/padicField/47.1.0.1}{1} }$ | ${\href{/padicField/53.6.0.1}{6} }{,}\,{\href{/padicField/53.3.0.1}{3} }$ | ${\href{/padicField/59.8.0.1}{8} }{,}\,{\href{/padicField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(3\)
| 3.1.9.15b1.5 | $x^{9} + 3 x^{8} + 6 x^{7} + 6 x^{3} + 3$ | $9$ | $1$ | $15$ | $C_3^2 : D_{6} $ | $$[\frac{3}{2}, \frac{3}{2}, 2]_{2}^{2}$$ |
|
\(11\)
| 11.3.1.0a1.1 | $x^{3} + 2 x + 9$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ |
| 11.2.3.4a1.1 | $x^{6} + 21 x^{5} + 153 x^{4} + 427 x^{3} + 306 x^{2} + 95 x + 8$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $$[\ ]_{3}^{6}$$ |
Artin representations
| Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| *432 | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
| 1.3.2t1.a.a | $1$ | $ 3 $ | \(\Q(\sqrt{-3}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
| 2.3267.3t2.b.a | $2$ | $ 3^{3} \cdot 11^{2}$ | 3.1.3267.1 | $S_3$ (as 3T2) | $1$ | $0$ | |
| 2.3267.24t22.b.a | $2$ | $ 3^{3} \cdot 11^{2}$ | 8.2.32019867.2 | $\textrm{GL(2,3)}$ (as 8T23) | $0$ | $0$ | |
| 2.3267.24t22.b.b | $2$ | $ 3^{3} \cdot 11^{2}$ | 8.2.32019867.2 | $\textrm{GL(2,3)}$ (as 8T23) | $0$ | $0$ | |
| 3.3267.4t5.c.a | $3$ | $ 3^{3} \cdot 11^{2}$ | 4.2.3267.1 | $S_4$ (as 4T5) | $1$ | $1$ | |
| 3.9801.6t8.e.a | $3$ | $ 3^{4} \cdot 11^{2}$ | 4.2.3267.1 | $S_4$ (as 4T5) | $1$ | $-1$ | |
| 4.9801.8t23.b.a | $4$ | $ 3^{4} \cdot 11^{2}$ | 8.2.32019867.2 | $\textrm{GL(2,3)}$ (as 8T23) | $1$ | $0$ | |
| *432 | 8.210082347387.9t26.a.a | $8$ | $ 3^{15} \cdot 11^{4}$ | 9.3.210082347387.1 | $((C_3^2:Q_8):C_3):C_2$ (as 9T26) | $1$ | $2$ |
| 8.210082347387.18t157.a.a | $8$ | $ 3^{15} \cdot 11^{4}$ | 9.3.210082347387.1 | $((C_3^2:Q_8):C_3):C_2$ (as 9T26) | $1$ | $-2$ | |
| 16.646...929.24t1334.a.a | $16$ | $ 3^{30} \cdot 11^{12}$ | 9.3.210082347387.1 | $((C_3^2:Q_8):C_3):C_2$ (as 9T26) | $1$ | $0$ |