Properties

Label 9.3.208839716978...3888.2
Degree $9$
Signature $[3, 3]$
Discriminant $-\,2^{9}\cdot 3^{9}\cdot 13^{7}\cdot 229^{7}$
Root discriminant $3019.81$
Ramified primes $2, 3, 13, 229$
Class number $2837268$ (GRH)
Class group $[9, 18, 17514]$ (GRH)
Galois group $S_3\times C_3$ (as 9T4)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![604675550673, 126031741812, -589727619, -1188199569, -8520087, 3608922, 5504, -3531, -3, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^9 - 3*x^8 - 3531*x^7 + 5504*x^6 + 3608922*x^5 - 8520087*x^4 - 1188199569*x^3 - 589727619*x^2 + 126031741812*x + 604675550673)
 
gp: K = bnfinit(x^9 - 3*x^8 - 3531*x^7 + 5504*x^6 + 3608922*x^5 - 8520087*x^4 - 1188199569*x^3 - 589727619*x^2 + 126031741812*x + 604675550673, 1)
 

Normalized defining polynomial

\( x^{9} - 3 x^{8} - 3531 x^{7} + 5504 x^{6} + 3608922 x^{5} - 8520087 x^{4} - 1188199569 x^{3} - 589727619 x^{2} + 126031741812 x + 604675550673 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $9$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[3, 3]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-20883971697881478397156686693888=-\,2^{9}\cdot 3^{9}\cdot 13^{7}\cdot 229^{7}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $3019.81$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 13, 229$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{375102} a^{6} - \frac{22444}{62517} a^{5} + \frac{7937}{41678} a^{4} + \frac{92965}{187551} a^{3} - \frac{30977}{62517} a^{2} + \frac{3767}{8931} a + \frac{58285}{125034}$, $\frac{1}{375102} a^{7} - \frac{1697}{41678} a^{5} + \frac{10618}{26793} a^{4} - \frac{713}{1603} a^{3} - \frac{13534}{62517} a^{2} + \frac{37117}{125034} a + \frac{1154}{20839}$, $\frac{1}{2605109169023852900440122} a^{8} - \frac{395210181969343361}{868369723007950966813374} a^{7} + \frac{73331818872324979}{66797671000611612831798} a^{6} + \frac{114000101553092248121507}{2605109169023852900440122} a^{5} + \frac{160422739009897442393647}{434184861503975483406687} a^{4} - \frac{44005207568021459221080}{144728287167991827802229} a^{3} - \frac{67242212586432912502043}{868369723007950966813374} a^{2} + \frac{36542787291958178248721}{289456574335983655604458} a + \frac{9399663739985747909470}{144728287167991827802229}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{9}\times C_{18}\times C_{17514}$, which has order $2837268$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $5$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 1907913.7392289056 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_3\times S_3$ (as 9T4):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 18
The 9 conjugacy class representatives for $S_3\times C_3$
Character table for $S_3\times C_3$

Intermediate fields

3.3.8862529.1, 3.1.643032.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Galois closure: data not computed
Degree 6 sibling: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R ${\href{/LocalNumberField/5.6.0.1}{6} }{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }$ ${\href{/LocalNumberField/7.3.0.1}{3} }^{3}$ ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }$ R ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }$ ${\href{/LocalNumberField/19.3.0.1}{3} }^{3}$ ${\href{/LocalNumberField/23.3.0.1}{3} }^{3}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{3}$ ${\href{/LocalNumberField/31.3.0.1}{3} }^{3}$ ${\href{/LocalNumberField/37.1.0.1}{1} }^{9}$ ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }$ ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ ${\href{/LocalNumberField/53.3.0.1}{3} }^{3}$ ${\href{/LocalNumberField/59.1.0.1}{1} }^{9}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.3.0.1$x^{3} - x + 1$$1$$3$$0$$C_3$$[\ ]^{3}$
2.6.9.3$x^{6} - 4 x^{4} + 4 x^{2} + 24$$2$$3$$9$$C_6$$[3]^{3}$
$3$3.3.3.1$x^{3} + 6 x + 3$$3$$1$$3$$S_3$$[3/2]_{2}$
3.3.3.1$x^{3} + 6 x + 3$$3$$1$$3$$S_3$$[3/2]_{2}$
3.3.3.1$x^{3} + 6 x + 3$$3$$1$$3$$S_3$$[3/2]_{2}$
$13$13.3.2.2$x^{3} - 13$$3$$1$$2$$C_3$$[\ ]_{3}$
13.6.5.2$x^{6} - 13$$6$$1$$5$$C_6$$[\ ]_{6}$
229Data not computed