Normalized defining polynomial
\( x^{9} - 38x^{7} - 38x^{6} + 171x^{5} - 646x^{4} - 171x^{3} + 3914x^{2} - 4541x + 1748 \)
Invariants
Degree: | $9$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[3, 3]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(-20878097849057792\) \(\medspace = -\,2^{9}\cdot 7^{4}\cdot 19^{8}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(65.06\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2^{3/2}7^{2/3}19^{8/9}\approx 141.7795371895746$ | ||
Ramified primes: | \(2\), \(7\), \(19\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{-2}) \) | ||
$\card{ \Aut(K/\Q) }$: | $3$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{1852183755320}a^{8}+\frac{568263161381}{1852183755320}a^{7}-\frac{198915009677}{1852183755320}a^{6}+\frac{67961834013}{370436751064}a^{5}+\frac{82118358567}{231522969415}a^{4}-\frac{11224639959}{185218375532}a^{3}-\frac{410248015281}{1852183755320}a^{2}+\frac{462038110253}{1852183755320}a+\frac{156586408423}{463045938830}$
Monogenic: | No | |
Index: | Not computed | |
Inessential primes: | $2$ |
Class group and class number
$C_{9}$, which has order $9$
Unit group
Rank: | $5$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{15716925427}{926091877660}a^{8}-\frac{292869233}{926091877660}a^{7}-\frac{689366007539}{926091877660}a^{6}-\frac{149325263765}{185218375532}a^{5}+\frac{1620089523773}{231522969415}a^{4}+\frac{77660736351}{92609187766}a^{3}-\frac{21901193480167}{926091877660}a^{2}+\frac{23259935003631}{926091877660}a-\frac{2025496828184}{231522969415}$, $\frac{13228646}{1474668595}a^{8}+\frac{8793486}{1474668595}a^{7}-\frac{502891012}{1474668595}a^{6}-\frac{165702210}{294933719}a^{5}+\frac{1901832686}{1474668595}a^{4}-\frac{1420869510}{294933719}a^{3}-\frac{7938138136}{1474668595}a^{2}+\frac{47143951818}{1474668595}a-\frac{24983432963}{1474668595}$, $\frac{5489698}{3795458515}a^{8}+\frac{8722858}{3795458515}a^{7}-\frac{224292316}{3795458515}a^{6}-\frac{67753289}{759091703}a^{5}+\frac{246695483}{3795458515}a^{4}-\frac{874859310}{759091703}a^{3}-\frac{1441548953}{3795458515}a^{2}+\frac{7103859419}{3795458515}a-\frac{4231657689}{3795458515}$, $\frac{1515007111}{231522969415}a^{8}-\frac{877385904}{231522969415}a^{7}-\frac{49325712692}{231522969415}a^{6}-\frac{8311932652}{46304593883}a^{5}+\frac{30383220871}{231522969415}a^{4}-\frac{183078257227}{46304593883}a^{3}+\frac{753547321934}{231522969415}a^{2}+\frac{128849400643}{231522969415}a+\frac{2217384832317}{231522969415}$, $\frac{200062853}{463045938830}a^{8}-\frac{866208907}{463045938830}a^{7}-\frac{6873565101}{463045938830}a^{6}+\frac{3411858243}{92609187766}a^{5}+\frac{4218994544}{231522969415}a^{4}-\frac{21292836974}{46304593883}a^{3}+\frac{668159469067}{463045938830}a^{2}-\frac{799891353811}{463045938830}a+\frac{169169010963}{231522969415}$ | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 41799.8473316 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{3}\cdot(2\pi)^{3}\cdot 41799.8473316 \cdot 9}{2\cdot\sqrt{20878097849057792}}\cr\approx \mathstrut & 2.58327914033 \end{aligned}\]
Galois group
$C_3\wr S_3$ (as 9T20):
A solvable group of order 162 |
The 22 conjugacy class representatives for $C_3 \wr S_3 $ |
Character table for $C_3 \wr S_3 $ |
Intermediate fields
3.1.2888.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 9 siblings: | data not computed |
Degree 18 siblings: | data not computed |
Degree 27 siblings: | data not computed |
Minimal sibling: | 9.3.426083629572608.1 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.3.0.1}{3} }^{3}$ | ${\href{/padicField/5.3.0.1}{3} }{,}\,{\href{/padicField/5.2.0.1}{2} }^{3}$ | R | ${\href{/padicField/11.9.0.1}{9} }$ | ${\href{/padicField/13.3.0.1}{3} }{,}\,{\href{/padicField/13.2.0.1}{2} }^{3}$ | ${\href{/padicField/17.3.0.1}{3} }^{2}{,}\,{\href{/padicField/17.1.0.1}{1} }^{3}$ | R | ${\href{/padicField/23.2.0.1}{2} }^{3}{,}\,{\href{/padicField/23.1.0.1}{1} }^{3}$ | ${\href{/padicField/29.6.0.1}{6} }{,}\,{\href{/padicField/29.3.0.1}{3} }$ | ${\href{/padicField/31.6.0.1}{6} }{,}\,{\href{/padicField/31.3.0.1}{3} }$ | ${\href{/padicField/37.6.0.1}{6} }{,}\,{\href{/padicField/37.1.0.1}{1} }^{3}$ | ${\href{/padicField/41.9.0.1}{9} }$ | ${\href{/padicField/43.3.0.1}{3} }^{3}$ | ${\href{/padicField/47.6.0.1}{6} }{,}\,{\href{/padicField/47.3.0.1}{3} }$ | ${\href{/padicField/53.3.0.1}{3} }{,}\,{\href{/padicField/53.2.0.1}{2} }^{3}$ | ${\href{/padicField/59.3.0.1}{3} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
$\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
$\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
2.6.9.5 | $x^{6} + 12 x^{5} + 68 x^{4} + 226 x^{3} + 457 x^{2} + 514 x + 243$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ | |
\(7\) | 7.3.0.1 | $x^{3} + 6 x^{2} + 4$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
7.6.4.2 | $x^{6} - 42 x^{3} + 147$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
\(19\) | 19.9.8.2 | $x^{9} + 57$ | $9$ | $1$ | $8$ | $C_9$ | $[\ ]_{9}$ |