Normalized defining polynomial
\( x^{9} - 3x^{7} - x^{6} + 3x^{5} + 2x^{4} + 4x^{3} - x^{2} - 5x + 1 \)
Invariants
Degree: | $9$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[3, 3]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: |
\(-203297472\)
\(\medspace = -\,2^{6}\cdot 3^{3}\cdot 7^{6}\)
| sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(8.38\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2^{2/3}3^{1/2}7^{2/3}\approx 10.061112020813587$ | ||
Ramified primes: |
\(2\), \(3\), \(7\)
| sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{-3}) \) | ||
$\card{ \Aut(K/\Q) }$: | $3$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{251}a^{8}-\frac{109}{251}a^{7}+\frac{81}{251}a^{6}-\frac{45}{251}a^{5}-\frac{112}{251}a^{4}-\frac{89}{251}a^{3}-\frac{84}{251}a^{2}+\frac{119}{251}a+\frac{76}{251}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $5$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: |
\( -1 \)
(order $2$)
| sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: |
$\frac{66}{251}a^{8}+\frac{85}{251}a^{7}-\frac{176}{251}a^{6}-\frac{209}{251}a^{5}+\frac{138}{251}a^{4}+\frac{150}{251}a^{3}+\frac{229}{251}a^{2}+\frac{324}{251}a-\frac{255}{251}$, $\frac{99}{251}a^{8}+\frac{2}{251}a^{7}-\frac{264}{251}a^{6}-\frac{188}{251}a^{5}+\frac{207}{251}a^{4}+\frac{225}{251}a^{3}+\frac{469}{251}a^{2}-\frac{16}{251}a-\frac{257}{251}$, $\frac{72}{251}a^{8}-\frac{67}{251}a^{7}-\frac{192}{251}a^{6}+\frac{23}{251}a^{5}+\frac{219}{251}a^{4}+\frac{118}{251}a^{3}+\frac{227}{251}a^{2}-\frac{468}{251}a-\frac{301}{251}$, $\frac{27}{251}a^{8}+\frac{69}{251}a^{7}-\frac{72}{251}a^{6}-\frac{211}{251}a^{5}-\frac{12}{251}a^{4}+\frac{107}{251}a^{3}+\frac{242}{251}a^{2}+\frac{452}{251}a-\frac{207}{251}$, $\frac{90}{251}a^{8}-\frac{21}{251}a^{7}-\frac{240}{251}a^{6}-\frac{34}{251}a^{5}+\frac{211}{251}a^{4}+\frac{22}{251}a^{3}+\frac{472}{251}a^{2}-\frac{83}{251}a-\frac{439}{251}$
| sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 2.91762479639 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{3}\cdot(2\pi)^{3}\cdot 2.91762479639 \cdot 1}{2\cdot\sqrt{203297472}}\cr\approx \mathstrut & 0.203031324873 \end{aligned}\]
Galois group
$C_3\times S_3$ (as 9T4):
A solvable group of order 18 |
The 9 conjugacy class representatives for $S_3\times C_3$ |
Character table for $S_3\times C_3$ |
Intermediate fields
\(\Q(\zeta_{7})^+\), 3.1.588.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Galois closure: | data not computed |
Degree 6 sibling: | 6.0.21168.1 |
Minimal sibling: | 6.0.21168.1 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | ${\href{/padicField/5.6.0.1}{6} }{,}\,{\href{/padicField/5.3.0.1}{3} }$ | R | ${\href{/padicField/11.6.0.1}{6} }{,}\,{\href{/padicField/11.3.0.1}{3} }$ | ${\href{/padicField/13.3.0.1}{3} }^{3}$ | ${\href{/padicField/17.6.0.1}{6} }{,}\,{\href{/padicField/17.3.0.1}{3} }$ | ${\href{/padicField/19.3.0.1}{3} }^{3}$ | ${\href{/padicField/23.6.0.1}{6} }{,}\,{\href{/padicField/23.3.0.1}{3} }$ | ${\href{/padicField/29.2.0.1}{2} }^{3}{,}\,{\href{/padicField/29.1.0.1}{1} }^{3}$ | ${\href{/padicField/31.3.0.1}{3} }^{3}$ | ${\href{/padicField/37.3.0.1}{3} }^{3}$ | ${\href{/padicField/41.2.0.1}{2} }^{3}{,}\,{\href{/padicField/41.1.0.1}{1} }^{3}$ | ${\href{/padicField/43.3.0.1}{3} }^{3}$ | ${\href{/padicField/47.6.0.1}{6} }{,}\,{\href{/padicField/47.3.0.1}{3} }$ | ${\href{/padicField/53.6.0.1}{6} }{,}\,{\href{/padicField/53.3.0.1}{3} }$ | ${\href{/padicField/59.6.0.1}{6} }{,}\,{\href{/padicField/59.3.0.1}{3} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.9.6.1 | $x^{9} + 3 x^{7} + 9 x^{6} + 3 x^{5} - 26 x^{3} + 9 x^{2} - 27 x + 29$ | $3$ | $3$ | $6$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ |
\(3\)
| 3.3.0.1 | $x^{3} + 2 x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
3.6.3.2 | $x^{6} + 13 x^{4} + 2 x^{3} + 31 x^{2} - 14 x + 4$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
\(7\)
| 7.9.6.1 | $x^{9} + 18 x^{8} + 108 x^{7} + 249 x^{6} + 396 x^{5} + 1944 x^{4} + 2631 x^{3} - 2358 x^{2} - 756 x + 11915$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
Artin representations
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
---|---|---|---|---|---|---|---|
* | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
1.3.2t1.a.a | $1$ | $ 3 $ | \(\Q(\sqrt{-3}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
* | 1.7.3t1.a.a | $1$ | $ 7 $ | \(\Q(\zeta_{7})^+\) | $C_3$ (as 3T1) | $0$ | $1$ |
1.21.6t1.a.a | $1$ | $ 3 \cdot 7 $ | 6.0.64827.1 | $C_6$ (as 6T1) | $0$ | $-1$ | |
1.21.6t1.a.b | $1$ | $ 3 \cdot 7 $ | 6.0.64827.1 | $C_6$ (as 6T1) | $0$ | $-1$ | |
* | 1.7.3t1.a.b | $1$ | $ 7 $ | \(\Q(\zeta_{7})^+\) | $C_3$ (as 3T1) | $0$ | $1$ |
* | 2.588.3t2.a.a | $2$ | $ 2^{2} \cdot 3 \cdot 7^{2}$ | 3.1.588.1 | $S_3$ (as 3T2) | $1$ | $0$ |
* | 2.84.6t5.a.a | $2$ | $ 2^{2} \cdot 3 \cdot 7 $ | 9.3.203297472.1 | $S_3\times C_3$ (as 9T4) | $0$ | $0$ |
* | 2.84.6t5.a.b | $2$ | $ 2^{2} \cdot 3 \cdot 7 $ | 9.3.203297472.1 | $S_3\times C_3$ (as 9T4) | $0$ | $0$ |