Properties

Label 9.3.167849078585...1392.2
Degree $9$
Signature $[3, 3]$
Discriminant $-\,2^{6}\cdot 3^{15}\cdot 7^{3}\cdot 127^{7}$
Root discriminant $820.12$
Ramified primes $2, 3, 7, 127$
Class number $124632$ (GRH)
Class group $[2, 6, 10386]$ (GRH)
Galois group $S_3\times C_3$ (as 9T4)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-306304831, -168595476, -31150623, -785715, 450471, 46410, -1320, -357, -3, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^9 - 3*x^8 - 357*x^7 - 1320*x^6 + 46410*x^5 + 450471*x^4 - 785715*x^3 - 31150623*x^2 - 168595476*x - 306304831)
 
gp: K = bnfinit(x^9 - 3*x^8 - 357*x^7 - 1320*x^6 + 46410*x^5 + 450471*x^4 - 785715*x^3 - 31150623*x^2 - 168595476*x - 306304831, 1)
 

Normalized defining polynomial

\( x^{9} - 3 x^{8} - 357 x^{7} - 1320 x^{6} + 46410 x^{5} + 450471 x^{4} - 785715 x^{3} - 31150623 x^{2} - 168595476 x - 306304831 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $9$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[3, 3]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-167849078585632886671411392=-\,2^{6}\cdot 3^{15}\cdot 7^{3}\cdot 127^{7}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $820.12$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 7, 127$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{7} a^{5} - \frac{3}{7} a^{4} + \frac{3}{7} a^{2}$, $\frac{1}{7} a^{6} - \frac{2}{7} a^{4} + \frac{3}{7} a^{3} + \frac{2}{7} a^{2}$, $\frac{1}{637} a^{7} + \frac{11}{637} a^{6} + \frac{3}{91} a^{5} + \frac{164}{637} a^{4} - \frac{2}{13} a^{3} - \frac{4}{13} a^{2} - \frac{3}{13} a - \frac{3}{13}$, $\frac{1}{6197034486097} a^{8} - \frac{2195072837}{6197034486097} a^{7} - \frac{312139538975}{6197034486097} a^{6} - \frac{434415795888}{6197034486097} a^{5} + \frac{1102876579313}{6197034486097} a^{4} + \frac{110369485218}{885290640871} a^{3} - \frac{146083290802}{885290640871} a^{2} - \frac{13095883419}{126470091553} a - \frac{36523119781}{126470091553}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{6}\times C_{10386}$, which has order $124632$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $5$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 63646.517425689955 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_3\times S_3$ (as 9T4):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 18
The 9 conjugacy class representatives for $S_3\times C_3$
Character table for $S_3\times C_3$

Intermediate fields

3.3.1306449.2, 3.1.96012.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Galois closure: data not computed
Degree 6 sibling: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R ${\href{/LocalNumberField/5.6.0.1}{6} }{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }$ R ${\href{/LocalNumberField/11.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{3}$ ${\href{/LocalNumberField/13.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{3}$ ${\href{/LocalNumberField/17.3.0.1}{3} }^{3}$ ${\href{/LocalNumberField/19.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{3}$ ${\href{/LocalNumberField/23.3.0.1}{3} }^{3}$ ${\href{/LocalNumberField/29.3.0.1}{3} }^{3}$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{3}$ ${\href{/LocalNumberField/37.3.0.1}{3} }^{3}$ ${\href{/LocalNumberField/41.3.0.1}{3} }^{3}$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{3}$ ${\href{/LocalNumberField/47.3.0.1}{3} }^{3}$ ${\href{/LocalNumberField/53.3.0.1}{3} }^{3}$ ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.9.6.1$x^{9} - 4 x^{3} + 8$$3$$3$$6$$S_3\times C_3$$[\ ]_{3}^{6}$
$3$3.9.15.28$x^{9} + 3 x^{8} + 6 x^{7} + 3 x^{3} + 6$$9$$1$$15$$S_3\times C_3$$[3/2, 2]_{2}$
$7$7.3.0.1$x^{3} - x + 2$$1$$3$$0$$C_3$$[\ ]^{3}$
7.6.3.1$x^{6} - 14 x^{4} + 49 x^{2} - 1372$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
$127$127.3.2.1$x^{3} - 127$$3$$1$$2$$C_3$$[\ ]_{3}$
127.6.5.5$x^{6} + 92583$$6$$1$$5$$C_6$$[\ ]_{6}$