Normalized defining polynomial
\( x^{9} - x^{8} + 4x^{7} - 4x^{6} - 10x^{5} + 34x^{4} - 88x^{3} + 168x^{2} - 239x + 103 \)
Invariants
Degree: | $9$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[3, 3]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: |
\(-16371585036288\)
\(\medspace = -\,2^{12}\cdot 3^{3}\cdot 23^{6}\)
| sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(29.39\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Ramified primes: |
\(2\), \(3\), \(23\)
| sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{-3}) \) | ||
$\card{ \Aut(K/\Q) }$: | $1$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2}a^{4}-\frac{1}{2}$, $\frac{1}{2}a^{5}-\frac{1}{2}a$, $\frac{1}{4}a^{6}-\frac{1}{4}a^{4}-\frac{1}{2}a^{3}-\frac{1}{4}a^{2}-\frac{1}{2}a+\frac{1}{4}$, $\frac{1}{4}a^{7}-\frac{1}{4}a^{5}-\frac{1}{4}a^{3}-\frac{1}{2}a^{2}+\frac{1}{4}a-\frac{1}{2}$, $\frac{1}{33868}a^{8}+\frac{215}{33868}a^{7}+\frac{4109}{33868}a^{6}-\frac{1495}{33868}a^{5}+\frac{7283}{33868}a^{4}+\frac{6767}{33868}a^{3}-\frac{3207}{33868}a^{2}+\frac{10217}{33868}a-\frac{1627}{16934}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $5$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: |
\( -1 \)
(order $2$)
| sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: |
$\frac{20}{8467}a^{8}+\frac{133}{16934}a^{7}-\frac{1493}{33868}a^{6}-\frac{531}{16934}a^{5}-\frac{1583}{33868}a^{4}-\frac{132}{8467}a^{3}+\frac{5917}{33868}a^{2}-\frac{7335}{8467}a+\frac{19091}{33868}$, $\frac{117}{8467}a^{8}-\frac{246}{8467}a^{7}+\frac{1003}{33868}a^{6}-\frac{2683}{16934}a^{5}-\frac{3757}{33868}a^{4}+\frac{17083}{16934}a^{3}-\frac{19151}{33868}a^{2}+\frac{43877}{8467}a-\frac{108883}{33868}$, $\frac{235}{8467}a^{8}-\frac{277}{8467}a^{7}+\frac{377}{8467}a^{6}+\frac{111}{16934}a^{5}-\frac{6125}{16934}a^{4}+\frac{6916}{8467}a^{3}-\frac{17016}{8467}a^{2}+\frac{35069}{16934}a-\frac{13787}{16934}$, $\frac{987}{33868}a^{8}+\frac{265}{16934}a^{7}-\frac{55}{16934}a^{6}+\frac{1540}{8467}a^{5}-\frac{4274}{8467}a^{4}-\frac{717}{16934}a^{3}+\frac{13375}{16934}a^{2}-\frac{21172}{8467}a+\frac{48097}{33868}$, $\frac{4085}{16934}a^{8}-\frac{2293}{16934}a^{7}+\frac{15809}{33868}a^{6}-\frac{9651}{8467}a^{5}-\frac{164839}{33868}a^{4}+\frac{50022}{8467}a^{3}-\frac{469977}{33868}a^{2}+\frac{637627}{16934}a-\frac{650759}{33868}$
| sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 5513.65412726 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{3}\cdot(2\pi)^{3}\cdot 5513.65412726 \cdot 1}{2\cdot\sqrt{16371585036288}}\cr\approx \mathstrut & 1.35205311018 \end{aligned}\]
Galois group
$C_3^2:\GL(2,3)$ (as 9T26):
A solvable group of order 432 |
The 11 conjugacy class representatives for $((C_3^2:Q_8):C_3):C_2$ |
Character table for $((C_3^2:Q_8):C_3):C_2$ |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
Degree 12 sibling: | data not computed |
Degree 18 sibling: | data not computed |
Degree 24 siblings: | data not computed |
Degree 27 sibling: | data not computed |
Degree 36 siblings: | data not computed |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | ${\href{/padicField/5.8.0.1}{8} }{,}\,{\href{/padicField/5.1.0.1}{1} }$ | ${\href{/padicField/7.6.0.1}{6} }{,}\,{\href{/padicField/7.2.0.1}{2} }{,}\,{\href{/padicField/7.1.0.1}{1} }$ | ${\href{/padicField/11.8.0.1}{8} }{,}\,{\href{/padicField/11.1.0.1}{1} }$ | ${\href{/padicField/13.6.0.1}{6} }{,}\,{\href{/padicField/13.2.0.1}{2} }{,}\,{\href{/padicField/13.1.0.1}{1} }$ | ${\href{/padicField/17.8.0.1}{8} }{,}\,{\href{/padicField/17.1.0.1}{1} }$ | ${\href{/padicField/19.4.0.1}{4} }^{2}{,}\,{\href{/padicField/19.1.0.1}{1} }$ | R | ${\href{/padicField/29.8.0.1}{8} }{,}\,{\href{/padicField/29.1.0.1}{1} }$ | ${\href{/padicField/31.4.0.1}{4} }^{2}{,}\,{\href{/padicField/31.1.0.1}{1} }$ | ${\href{/padicField/37.3.0.1}{3} }^{3}$ | ${\href{/padicField/41.6.0.1}{6} }{,}\,{\href{/padicField/41.3.0.1}{3} }$ | ${\href{/padicField/43.6.0.1}{6} }{,}\,{\href{/padicField/43.2.0.1}{2} }{,}\,{\href{/padicField/43.1.0.1}{1} }$ | ${\href{/padicField/47.8.0.1}{8} }{,}\,{\href{/padicField/47.1.0.1}{1} }$ | ${\href{/padicField/53.6.0.1}{6} }{,}\,{\href{/padicField/53.3.0.1}{3} }$ | ${\href{/padicField/59.8.0.1}{8} }{,}\,{\href{/padicField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
2.8.12.30 | $x^{8} + 2 x^{7} + 2 x^{6} + 2 x^{5} + 2 x^{2} + 2$ | $8$ | $1$ | $12$ | $\textrm{GL(2,3)}$ | $[4/3, 4/3, 2]_{3}^{2}$ | |
\(3\)
| 3.3.0.1 | $x^{3} + 2 x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
3.6.3.2 | $x^{6} + 13 x^{4} + 2 x^{3} + 31 x^{2} - 14 x + 4$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
\(23\)
| 23.9.6.1 | $x^{9} + 6 x^{7} + 123 x^{6} + 12 x^{5} + 78 x^{4} - 6127 x^{3} + 492 x^{2} - 6888 x + 69105$ | $3$ | $3$ | $6$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ |
Artin representations
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
---|---|---|---|---|---|---|---|
* | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
1.3.2t1.a.a | $1$ | $ 3 $ | \(\Q(\sqrt{-3}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
2.6348.3t2.a.a | $2$ | $ 2^{2} \cdot 3 \cdot 23^{2}$ | 3.1.6348.1 | $S_3$ (as 3T2) | $1$ | $0$ | |
2.25392.24t22.a.a | $2$ | $ 2^{4} \cdot 3 \cdot 23^{2}$ | 8.2.30948175872.3 | $\textrm{GL(2,3)}$ (as 8T23) | $0$ | $0$ | |
2.25392.24t22.a.b | $2$ | $ 2^{4} \cdot 3 \cdot 23^{2}$ | 8.2.30948175872.3 | $\textrm{GL(2,3)}$ (as 8T23) | $0$ | $0$ | |
3.25392.4t5.a.a | $3$ | $ 2^{4} \cdot 3 \cdot 23^{2}$ | 4.2.25392.1 | $S_4$ (as 4T5) | $1$ | $1$ | |
3.76176.6t8.a.a | $3$ | $ 2^{4} \cdot 3^{2} \cdot 23^{2}$ | 4.2.25392.1 | $S_4$ (as 4T5) | $1$ | $-1$ | |
4.1218816.8t23.a.a | $4$ | $ 2^{8} \cdot 3^{2} \cdot 23^{2}$ | 8.2.30948175872.3 | $\textrm{GL(2,3)}$ (as 8T23) | $1$ | $0$ | |
* | 8.163...288.9t26.a.a | $8$ | $ 2^{12} \cdot 3^{3} \cdot 23^{6}$ | 9.3.16371585036288.1 | $((C_3^2:Q_8):C_3):C_2$ (as 9T26) | $1$ | $2$ |
8.147...592.18t157.a.a | $8$ | $ 2^{12} \cdot 3^{5} \cdot 23^{6}$ | 9.3.16371585036288.1 | $((C_3^2:Q_8):C_3):C_2$ (as 9T26) | $1$ | $-2$ | |
16.182...896.24t1334.a.a | $16$ | $ 2^{26} \cdot 3^{8} \cdot 23^{10}$ | 9.3.16371585036288.1 | $((C_3^2:Q_8):C_3):C_2$ (as 9T26) | $1$ | $0$ |