Normalized defining polynomial
\( x^{9} - 9 x^{5} - 12 x^{4} - 31 x^{3} - 54 x^{2} - 36 x - 8 \)
Invariants
| Degree: | $9$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[3, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-15326915904=-\,2^{6}\cdot 3^{9}\cdot 23^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $13.54$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{8} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{8} a^{3} - \frac{3}{8} a - \frac{1}{4}$, $\frac{1}{64} a^{8} + \frac{1}{32} a^{7} + \frac{1}{16} a^{6} + \frac{1}{8} a^{5} + \frac{7}{64} a^{4} + \frac{1}{32} a^{3} - \frac{27}{64} a^{2} + \frac{5}{16} a + \frac{1}{16}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 44.5382472337 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3.S_3^2$ (as 9T18):
| A solvable group of order 108 |
| The 11 conjugacy class representatives for $C_3^2 : D_{6} $ |
| Character table for $C_3^2 : D_{6} $ |
Intermediate fields
| 3.1.23.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 9 sibling: | data not computed |
| Degree 18 siblings: | data not computed |
| Degree 27 sibling: | data not computed |
| Degree 36 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }$ | ${\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }$ | ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }$ | ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }$ | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 2.6.6.5 | $x^{6} - 2 x^{4} + x^{2} - 3$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| $3$ | 3.9.9.2 | $x^{9} + 18 x^{3} + 27 x + 27$ | $3$ | $3$ | $9$ | $C_3^2 : S_3 $ | $[3/2, 3/2]_{2}^{3}$ |
| $23$ | 23.3.0.1 | $x^{3} - x + 4$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 23.6.3.2 | $x^{6} - 529 x^{2} + 48668$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| 1.2e2_3.2t1.1c1 | $1$ | $ 2^{2} \cdot 3 $ | $x^{2} - 3$ | $C_2$ (as 2T1) | $1$ | $1$ | |
| 1.23.2t1.1c1 | $1$ | $ 23 $ | $x^{2} - x + 6$ | $C_2$ (as 2T1) | $1$ | $-1$ | |
| 1.2e2_3_23.2t1.1c1 | $1$ | $ 2^{2} \cdot 3 \cdot 23 $ | $x^{2} + 69$ | $C_2$ (as 2T1) | $1$ | $-1$ | |
| 2.2e4_3e2_23.6t3.2c1 | $2$ | $ 2^{4} \cdot 3^{2} \cdot 23 $ | $x^{6} - 6 x^{4} + 9 x^{2} + 621$ | $D_{6}$ (as 6T3) | $1$ | $0$ | |
| 2.2e2_3e3_23.6t3.1c1 | $2$ | $ 2^{2} \cdot 3^{3} \cdot 23 $ | $x^{6} - 9 x^{4} - 18 x^{3} + 42 x^{2} - 72 x + 24$ | $D_{6}$ (as 6T3) | $1$ | $0$ | |
| 2.2e2_3e3_23.3t2.1c1 | $2$ | $ 2^{2} \cdot 3^{3} \cdot 23 $ | $x^{3} - 6 x - 20$ | $S_3$ (as 3T2) | $1$ | $0$ | |
| * | 2.23.3t2.1c1 | $2$ | $ 23 $ | $x^{3} - x^{2} + 1$ | $S_3$ (as 3T2) | $1$ | $0$ |
| 4.2e4_3e6_23e2.6t9.2c1 | $4$ | $ 2^{4} \cdot 3^{6} \cdot 23^{2}$ | $x^{6} + 9 x^{4} - 4 x^{3} + 6 x^{2} + 12 x - 11$ | $S_3^2$ (as 6T9) | $1$ | $0$ | |
| 6.2e6_3e9_23e4.18t51.6c1 | $6$ | $ 2^{6} \cdot 3^{9} \cdot 23^{4}$ | $x^{9} - 9 x^{5} - 12 x^{4} - 31 x^{3} - 54 x^{2} - 36 x - 8$ | $C_3^2 : D_{6} $ (as 9T18) | $1$ | $-2$ | |
| * | 6.2e6_3e9_23e2.9t18.6c1 | $6$ | $ 2^{6} \cdot 3^{9} \cdot 23^{2}$ | $x^{9} - 9 x^{5} - 12 x^{4} - 31 x^{3} - 54 x^{2} - 36 x - 8$ | $C_3^2 : D_{6} $ (as 9T18) | $1$ | $2$ |