Properties

Label 9.3.150373887143...9088.1
Degree $9$
Signature $[3, 3]$
Discriminant $-\,2^{6}\cdot 3^{9}\cdot 17^{3}\cdot 19^{7}\cdot 43^{7}$
Root discriminant $2254.34$
Ramified primes $2, 3, 17, 19, 43$
Class number $1800144$ (GRH)
Class group $[6, 18, 16668]$ (GRH)
Galois group $S_3\times C_3$ (as 9T4)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![3338141159, -7301815632, 26836503, -11546887, -344955, 166422, 938, -363, -3, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^9 - 3*x^8 - 363*x^7 + 938*x^6 + 166422*x^5 - 344955*x^4 - 11546887*x^3 + 26836503*x^2 - 7301815632*x + 3338141159)
 
gp: K = bnfinit(x^9 - 3*x^8 - 363*x^7 + 938*x^6 + 166422*x^5 - 344955*x^4 - 11546887*x^3 + 26836503*x^2 - 7301815632*x + 3338141159, 1)
 

Normalized defining polynomial

\( x^{9} - 3 x^{8} - 363 x^{7} + 938 x^{6} + 166422 x^{5} - 344955 x^{4} - 11546887 x^{3} + 26836503 x^{2} - 7301815632 x + 3338141159 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $9$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[3, 3]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-1503738871438861505094232529088=-\,2^{6}\cdot 3^{9}\cdot 17^{3}\cdot 19^{7}\cdot 43^{7}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $2254.34$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 17, 19, 43$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{26961} a^{6} - \frac{12404}{26961} a^{5} - \frac{7501}{26961} a^{4} + \frac{780}{8987} a^{3} - \frac{3808}{8987} a^{2} - \frac{5383}{26961} a + \frac{12400}{26961}$, $\frac{1}{188727} a^{7} - \frac{290}{188727} a^{5} - \frac{24614}{188727} a^{4} - \frac{25661}{62909} a^{3} + \frac{79220}{188727} a^{2} + \frac{51026}{188727} a - \frac{56827}{188727}$, $\frac{1}{362382283417293260934351} a^{8} + \frac{926060171595841382}{362382283417293260934351} a^{7} - \frac{1312273139443120016}{120794094472431086978117} a^{6} + \frac{163795292437591446041528}{362382283417293260934351} a^{5} - \frac{52893886836711508449363}{120794094472431086978117} a^{4} + \frac{17786196571452056690795}{51768897631041894419193} a^{3} + \frac{22436042119236220721530}{120794094472431086978117} a^{2} + \frac{50655966509719744429849}{362382283417293260934351} a - \frac{22405447082992961650379}{120794094472431086978117}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{6}\times C_{18}\times C_{16668}$, which has order $1800144$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $5$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 180013.72439652862 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_3\times S_3$ (as 9T4):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 18
The 9 conjugacy class representatives for $S_3\times C_3$
Character table for $S_3\times C_3$

Intermediate fields

3.3.667489.2, 3.1.1500012.3

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Galois closure: data not computed
Degree 6 sibling: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R ${\href{/LocalNumberField/5.6.0.1}{6} }{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }$ ${\href{/LocalNumberField/7.3.0.1}{3} }^{3}$ ${\href{/LocalNumberField/11.3.0.1}{3} }^{3}$ ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }$ R R ${\href{/LocalNumberField/23.3.0.1}{3} }^{3}$ ${\href{/LocalNumberField/29.3.0.1}{3} }^{3}$ ${\href{/LocalNumberField/31.3.0.1}{3} }^{3}$ ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }$ ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ R ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ ${\href{/LocalNumberField/53.3.0.1}{3} }^{3}$ ${\href{/LocalNumberField/59.3.0.1}{3} }^{3}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.9.6.1$x^{9} - 4 x^{3} + 8$$3$$3$$6$$S_3\times C_3$$[\ ]_{3}^{6}$
$3$3.9.9.1$x^{9} + 54 x^{5} + 27 x^{3} + 189$$3$$3$$9$$S_3\times C_3$$[3/2]_{2}^{3}$
$17$$\Q_{17}$$x + 3$$1$$1$$0$Trivial$[\ ]$
$\Q_{17}$$x + 3$$1$$1$$0$Trivial$[\ ]$
$\Q_{17}$$x + 3$$1$$1$$0$Trivial$[\ ]$
17.2.1.2$x^{2} + 51$$2$$1$$1$$C_2$$[\ ]_{2}$
17.2.1.2$x^{2} + 51$$2$$1$$1$$C_2$$[\ ]_{2}$
17.2.1.2$x^{2} + 51$$2$$1$$1$$C_2$$[\ ]_{2}$
$19$19.3.2.3$x^{3} - 304$$3$$1$$2$$C_3$$[\ ]_{3}$
19.6.5.1$x^{6} - 304$$6$$1$$5$$C_6$$[\ ]_{6}$
$43$43.3.2.3$x^{3} - 3483$$3$$1$$2$$C_3$$[\ ]_{3}$
43.6.5.6$x^{6} + 2539107$$6$$1$$5$$C_6$$[\ ]_{6}$